PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and microhardness of Ti6Al4V alloy treated by GTAW SiC alloying

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the change of the structure and microhardness of Ti6Al4V titanium alloy after remelting and remelting with SiC alloing by electric arc welding (GTAW method) was studied. The current intensity equal 100 A and fixed scan speed rate equal 0,2 m/min has been used to remelting surface of the alloy. Change of structure were investigated by optical and scanning electron microscopy. Microhardness test showed, that the remelting of the surface does not change the hardness of the alloy. Treated by GTAW SiC alloying leads to the formation of hard (570 HV0,1) surface layer with a thickness of 2 mm. The resulting surface layer is characterized by diverse morphology alloyed zone. The fracture of alloy after conventional heat treatment, similarly to fracture after remelting with GTAW is characterized by extremely fine dimples of plastic deformation. In the alloyed specimens the intergranular and crystalline fracture was identified.
Rocznik
Strony
261--266
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
Bibliografia
  • [1] Cao X., Jahazi X., Cao M., M. Jahazi (2009). Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser. Optics and Lasers in Engineering. 47, 1231-1241.
  • [2] Garbacz H., Wieciński P., Ossowski M., Ortore M. G., Wierzchoń T., Kurzydłowski K. J. (2008). Surface engineering techniques used for improving the mechanical and tribological properties of the Ti6A14V alloy. Surface & Coatings Technology. 202, 2453-2457.
  • [3] Yong L., Shiron G., Hongtao L., Zhongmin J. (2009). Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer. Journal of Biomechanics. 42, 2708-2711.
  • [4] Filip R., Sieniawski J. (2006). Mikrostruktura i właściwości użytkowe warstwy wierzchniej stopu tytanu Ti-6Al-4V kształtowanej metodą stopowania laserowego. Inżynieria Materiałowa 3.
  • [5] Filip R. (2006). Alloying of surface layer of the Ti-6Al-4V titanium alloy through the laser treatment. Journal of Achievements in Materials and Manufacturing Engineering. 15, 174-180.
  • [6] Lisiecki A, Klimpel A. (2008). Diode laser surface modification of, Ti6Al4V alloy Ti improve erosion wear resistance. Archives of Materials Science and Engineering. 32, 5-12.
  • [7] Liqun L., Dejian L., Yanbin Ch., Chunming W., Fuquan L. (2009). Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection. Acta Materialia. 57, 3606-3614.
  • [8] Ossowska A., Zielinski A., Buczek M. (2010). Influence of Laser Melting on Surface Layer Properties of Titanium Alloy Ti6Al4V. Journal of Biomechanic. 43 (1), 55.
  • [9] Dudek A., Bałaga Z. (2009). Residual stress state in titanium alloy remelted using GTAW method. Archives of Foundry Engineering. 9 (2), 193-196.
  • [10] Pleshakov E., Sienyav'ski Ya., Filip R. (2002). Laser surface modification of Ti-6Al-4V alloy with silicon carbide. Materials Science. 38 (5), 646-651.
  • [11] Saresh N., Gopalakrishna Pillai M., Mathewa J. (2007). Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy. Journal of Materials Processing Technology. 192-193, 83-88.
  • [12] Yuan-Ching L., Yu-Chi L. (2011). Microstructure and tribological performance of Ti-6Al-4V cladding with SiC powder. Surface & Coatings Technology. 205, 5400-5405.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ7-0005-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.