PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three dimensional polyethersulphone scaffold for chondrocytes cultivation - the future supportive material for articular cartilage regeneration

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The this paper method of obtaining broad-pore membranes for application as scaffolds for chondrocyte cultivation is described. These membranes were obtained from polyethersulfone. They are characterized by the presence of both macropores of relatively large diameter, as well as micropores. These membranes are intended first of all for use in cultivation of the cartilage cells (chondrocytes). The membranes are obtained by the phase inversion method followed by dissolving cellulose present in the membrane. Cellulose is a macropore precursor. Cellulose is dissolved by means of a copper hydroxide ammonia complex. The membranes obtained are not cyto-toxic. The culture of chondrocytes derived from White New Zeeland breed rabbits developed very well on these membranes. The cell cultures were studied by observation under an optical microscope and scanning electron microscope. The protein mass increase on the membrane was determined by flame analysis. The results of these experiments did not show any negative effects of the membranes on the cell culture. Just the opposite, the cartilage cells development on the membranes proceeded very well. The results obtained show that the membrane developed is a very good scaffold for cell cultivation.
Twórcy
autor
autor
autor
  • Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 warsaw, Poland, kdudzinski@ibib.waw.pl
Bibliografia
  • 1. Clement J., Pathak S.S., Aravinda M., Rajan D.: Is ACL reconstruction only for athletes. International Orthopaedics 2008, 32, 57-61.
  • 2. Changhai D.M.D., Garnero P., Cicuttini F., Scott F., Cooley H., Jones G.: Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis and Cartilage 2005, 13, 198-205.
  • 3. Engebretsen L., Bahr R.: Surgical treatment of cartilage injuries. European Surgery 2004, 36, 13-19.
  • 4. Ding C.M.D., Cicuttini F.P.D., Jones G.M.D.: Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthritis and Cartilage 2007, 15, 479-486.
  • 5. Knecht S., Vanwanseele B., Stüssi E.: A review on the mechanical quality of articular cartilage - Implications for the diagnosis of osteoarthrisis. Clinical Biomechanics 2006, 21, 999-1012.
  • 6. Kang S.W., Bada L.P., Kang C.S., Lee J.S., Kim C.H., Park J.H., Kim B.S.: Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnology Letters 2008, 30, 435-439.
  • 7. Grässel S., Ahmed N.: Use of bone narrow mesenchymal stem cells for ex vivo cartilage regeneration. Orthopäde 2007, 36, 227-235.
  • 8. Irie Y., Mizumoto H., Fujino S., Kajiwara T.: Reconstruction of cartilage tissue Rusing scaffold-free organoid culture technique. Journal of Bioscience and Bioengineering 2008, 105, 450-453.
  • 9. Benz K., Mollenhauer J.: Joint cartilage, osteoarthritis and cell-based repair. Trauma und Berufskrankheit 2007, 9, 235-241.
  • 10. Velikonja N.K., Wozniak G., Maličev E., Knežević M., Jeras M.: Protein synthesis of human chondrocytes cultured in vitro for autologous transplantation. European Journal of Physiology 2001, 442, 169-170.
  • 11. Schulze-Tanzil G., De Souza P., Castrejon H.V., John T., Merker H.J., Scheid A., Shakibaei M.: Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell and Tissue Research 2002, 308, 371-379.
  • 12. Yates K.E., Allemann F., Glowacki J.: Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell and Tissue Banking 2005, 6, 45-54.
  • 13. Schulz R.M., Bader A.: Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. European Biophysics Journal 2007, 36, 539-568.
  • 14. Capes J.S., Ando H.Y., Cameron R.E.: Fabrication of polymeric scaffolds with a controlled distribution of pores. Journal of Materials Science: Materials in Medicine 2005, 16, 1069-1075.
  • 15. Takagi M., Fukui Y., Wakitani S., Yoshida T.: Effect of Poly DL-Lactic-Co-Glycolic Acid Mesh on a Three-Dimensional Culture of Chondrocytes. Journal of Bioscience and Bioengineering 2004, 98, 477 - 481.
  • 16. Oesser S., Seifert J.: Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell and Tissue Research 2003, 311, 393-399.
  • 17. Erich D., Wiese H., Maier G., Skodacek D., Appel B., Sarhan H., Tessmar J., Staudenmaier R., Wenzel M.M., Goepferich A., Blunk T.: In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Engineering 2007, 13, 9, 2207-2218.
  • 18. Dare E.V., Vascotto S.G., Carlsson D.J., Hincke M.T., Griffith M.: Differentiation of a fibrin gel encapsulated chondrogenic cell line. Regenerative Medicine 2007, 30, 7, 619-627.
  • 19. Zwingmann J., Mehlhorn A.T., Südkamp N., Stark B., Dauner M., Schmal H.: Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Engineering 2007, 13, 9, 2335-2343.
  • 20. Lee C.S.D., Gleghorn J.P., Choi N.W., Cabodi M., Stroock A.D., Bonassar L.J.: Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 2007, 28, 2987-2993.
  • 21. Takahashi T., Ogasawara T., Asawa Y., Mori Y., Uchinuma E., Takato T., Hoshi K.: Three-dimensional mocroenvironments retain chondrocyte phenotypes during proliferation culture. Tissue Engineering 2007, 13, 7, 1583-1592.
  • 22. Płończak M., Czubak J., Hoser G., Chwojnowski A., Kawiak J., Dudziński K., Czumińska K.: Repair of articular cartilage full thickness defects with cultured chondrocytes placed on polysulphonic membrane - experimental studies in rabbits. Biocybernetics and Biomedical Engineering 2008, 28, 87-93.
  • 23. Chwojnowski A., Dudziński K.: Broad-pore polyethersulfone scaffolds for 3D cells cultivation. PL Invention application P-379880 2006.
  • 24. Kinasiewicz A., Dudziński K., Chwojnowski A., Weryński A., Kawiak J.: Three-dimensional culture of hepatocytes on spongy polyethersulfone membrane developed for cell transplantation. Transplant. Proc. 2007, 39, 9, 2914-2916.
  • 25. Kiansiewicz A., Smietanka A., Dudzinski K., Chwojnowski A., Gajkowska, Werynski A.: Spongly polyetherosulfone membrane for hepatocyte cultivation. Studies on hepatoma C3A cells. Artificial Organs 2008, 32, 9, 747-752.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0059-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.