PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Inequality-Based Approximation of Matrix Eigenvectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel procedure is given here for constructing non-negative functions with zero-valued global minima coinciding with eigenvectors of a general real matrix A. Some of these functions are distinct because all their local minima are also global, offering a new way of determining eigenpairs by local optimization. Apart from describing the framework of the method, the error bounds given separately for the approximation of eigenvectors and eigenvalues provide a deeper insight into the fundamentally different nature of their approximations.
Rocznik
Strony
533--538
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
  • Research Group on Artificial Intelligence, University of Szeged, Szeged, Hungary, H-6720, Aradi vrt. 1
autor
  • Department of Applied Informatics, University of Szeged, Szeged, Hungary, H-6720, Árpád tér 2
autor
  • Department of Theoretical Physics, University of Szeged, Szeged, Hungary, H-6720, Tisza L. Krt. 84-86
  • Department of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary, H-6720, Somogyi u. 4
  • Department of Natural Sciences, Dunaújváros Polytechnic, Dunaújváros, H-2400, Táncsics M. u. 1
Bibliografia
  • [1] Bazaraa M.S. , Sherali H.D. and Shetty C.M. (1993): Nonlinear Programming Theory and Algorithms. - New York: Wiley.
  • [2] Bellman R. (1970): Introduction to Matrix Analysis (2nd Ed.). - New York: McGraw-Hill.
  • [3] Dragomir S.S. and Arslangić Š.Z. (1991): A refinement of the Cauchy-Buniakowski-Schwarz inequality for real numbers. - Radovi Matematičui (Sarajevo) Vol. 7, No. 2, pp. 299-303.
  • [4] Eichhorn W. (1978): Functional Equations in Economics. - Reading, MA: Addison-Wesley.
  • [5] Golub G.H. and Van Loan C.F. (1996): Matrix Computations (3rd Ed.). - Baltimore: The John Hopkins University Press.
  • [6] Hardy G.H., Littlewood J.E. and Pólya G. (1934): Inequalities. - London: Cambridge University Press.
  • [7] Kato T. (1966): Perturbation Theory of Linear Operators. - New York: Springer.
  • [8] Mitrinović D.S., Pečarić and Fink J.E. (1993): Classical and New Inequalies in Analysis. - London: Kluwer.
  • [9] Parlett B. (1980): The Symmetric Eigenvalue Problem. - Englewodd Cliffs: Prentice-Hall.
  • [10] Wilkinson J.H. (1965): The Algebraic Eigenvalue Problem. - Oxford: Oxford University Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ1-0001-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.