PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanocrystalline glass-ceramics formation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
6th Seminar Porous Glasses-Special Glasses, PGL 2002, Szklarska Poręba, 22-26.IX.2002 r.
Języki publikacji
EN
Abstrakty
EN
The atomic scale mechanism of the transition of the glass structure into the structure of a compound crystallizing in it has been studied. It has been demonstrated that near the glass transformation temperature Tg the crystallization by direct ordering of the amorphous glass structure through local displacements of its elements can take place. TiO2 nucleated crystallization of SiO2-Al2O3-MgO glass-ceramics is the example. Up to now, it has been thought that amorphous phase separation is an indispensable step in the glass-ceramization. Crystallization with the direct ordering mechanism creates the compounds whose chemical composition and structure are close to those of glass network or to the domains and clusters in it. The (Mg, Al)-titanate, and high quartz structure solid solutions appearence are here the example.
Czasopismo
Rocznik
Strony
115--123
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • University of Mining and Metallurgy, Faculty of Materials Science and Ceramics, al. Adama Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Beall G.H., Pinckney L.R., J. Am. Ceram. Soc. 82 (1999), 63.
  • [2] Beall G.H., Duke D.A., J. Mater. Sci. 4 (1969), 340.
  • [3] Palmer D.C., Stuffed derivaties of the silica polymorphs, [In] Review in Mineralogy, Vol. 29, pp. 83-112, [Ed.] Mineralogical Society o f America, Washington, D.C., 1994.
  • [4] Petzoldt J., Pannhorst W., J. Non-Cryst. Solids 129 (1991), 191.
  • [5] Strnad Z., Glass-Ceramic Materials, Elsevier, Amsterdam 1984.
  • [6] Stewart D.R., TiO2 and ZrO2 as nucleants in a lithia aluminosilicate glass-ceramic, [In] Advances in Nucleation and Crystallization in Glasses, [Eds.] L.L. Hench, S.W. Friedman, American Ceramic Society, Columbus, OH, 1971, pp. 83-90.
  • [7] Pinckney L.R., Beall G.H., J. Non-Cryst. Solids 219 (1997), 219.
  • [8] Tick P., Dejneka M., Ultratransparent glass-ceramics fo r photonics, [In] Proc. XVI Int. Congress Glass., San Francisco, American Ceramic Society, Columbus, OH, 1998.
  • [9] Mac Dowell F., Beall G.H., J. Am. Ceram. Soc. 52 (1969), 17.
  • [10] Pinckney L.R., U.S. Pat. No. 4687750, Aug. 18, 1987.
  • [11] Beal G.H., Glasstech. Ber. Glass Sci. Technol. 73 C l (2000), 37.
  • [12] Pinckney L.R., Glasstech. Ber. Glass Sci. Technol. 73 C l (2000), 113.
  • [13] Scheyer W., Schairer J.F., Amer. Mineral. 47 (1962), 90.
  • [14] Taufik A., Stoch L., J. Non-Cryst. Solids 219 (1997), 149.
  • [15] Dutkiewicz J., Stoch L., Morgiel J., Kostorz G., Stoch P., Mater. Chem. Phys. (in press).
  • [16] Stoch L., High Temp. Mater. Processes 49 (1992), 245.
  • [17] Stoch L., Structure and crystallization of multicomponent glasses, [In] Proc. XVII Int. Congr. Glass, Edinburgh, Scotland, Vol. 1, Soc. Glass Sci. Tech., Shefield, UK, 2000, pp. 62-73.
  • [18] Stoch L., Opt. Appl. 30 (2000), 647.
  • [19] Środa M., Stoch L., Duszak S., Olejniczak Z., Ceramics, Papers o f the Commission on Ceramic Science, Pol. Acad. Sci. Krakow Div., 66 (2001), 153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0013-0122
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.