PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Szybki wzrost kryształów jako metoda postępowania z odpadowym Mg(OH)2

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Rapid growth approaches from nano-Mg(OH)2 to bulk materials and their application in the environment
Języki publikacji
PL
Abstrakty
PL
Istnieje duże zapotrzebowanie na badania nad detoksykacją nanoodpadów i recyklingiem zużytych nanosorbentów. W niniejszym artykule dokonano przeglądu badań prowadzonych w tej dziedzinie przez naszą grupę. Przetwarzanie nano-Mg(OH)2 z ładunkiem Cr(VI) stanowi nową strategię zagospodarowania nanoodpadów. Nanoodpady zostały przetworzone w nietoksyczny materiał masowy i stężony roztwór zawierający Cr(VI) na drodze szybkiego wzrostu nanokryształów, który spowodował desorpcję i całkowite oddzielenie Cr(VI) od substancji stałej. Stężony roztwór Cr(VI) można poddać recyklingowi przemysłowemu, a oczyszczony produkt stały można stosować w produkcji materiałów ceramicznych, powłok do metali i ognioodpornych tworzyw sztucznych. Przedstawiono też strategię recyklingu nanosorbentu Mg(OH)2 do stosowania go do usuwania Cr(VI) z roztworów o małym stężeniu Cr(VI).
EN
There is a strong demand for the investigations on the detoxification of the nano-wastes or recycling of the loaded nanoadsorbents. This article reviews the studies of our group in this field. The treatment of Cr(VI) loaded nano-Mg(OH)2 introduces a new strategy for nano-waste disposal. The nano-wastes were converted into a nontoxic bulk material and a concentrated solution containing Cr(VI) by the rapid growth of nano-cystals which leads to the desorption and complete separation of Cr(VI) from the solid. The concentrated Cr(VI) solution can be recycled in the industry and the detoxified solid product can be reutilized in ceramics, metal coatings or flame-retardant plastics. Finally, a recycling strategy of Mg(OH)2 nano-adsorbent was provided for the enrichment of Cr(VI) from aqueous solutions of low-concentration Cr(VI).
Czasopismo
Rocznik
Strony
919--928
Opis fizyczny
Bibliogr. 36 poz., 7 rys.
Twórcy
autor
autor
autor
  • Główne Państwowe Laboratorium Chemii Strukturalnej, Instytut Badawczy Budowy Materii Prowincji Fujian, Chińska Akademia Nauk, Chiny
Bibliografia
  • 1. Sharma Y. C., Srivastava V, Singh V. K., Kaul S. N., Weng C. H.: Nanoadsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology 2009, 30, 6, 583-609.
  • 2. Zhang W. X.: Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 2003, 5, 3-4, 323-332.
  • 3. Liang P, Liu Y., Guo L., Zeng J., Lu H. B.: Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry 2004, 19, II, 1489-1492.
  • 4. Kaur A., Gupta U.: A review on applications of nanoparticles for the preconcentration of environmental pollutants. Journal of Materials Chemistry 2009, 19, 44, 8279-8289.
  • 5. Ray P. C., Yu H. T, Fu P. P.: Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. Journal of Environmental Science and Health Part C 2009, 27, I, 1-35.
  • 6. Musee N.: Nanowastes and the environment: Potential new waste management paradigm. Environment International 2011, 37, 1, 112-128.
  • 7. Warren L. A., Maurice P. A., Parmar N., Ferris F.G.: Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal 2001, 18, I, 93-115.
  • 8. Ona-NguemaG., Morin G., Wang Y. H., Menguy N., Juillot F, Olivi L., Aquilanti G., Abdelmoula M„ Ruby C., Bargar J. R., Guyot F., Calas G., Brown G. E.: Arsenite sequestration at the surface of nano-Fe(OH)(2), ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochimica et Cosmochimica Acta 2009, 73, 5, 1359-1381.
  • 9. Kent J. A.: Riegel's handbook of industrial chemistry. Springer 2003.
  • 10. Viswanathan K., Tilak B. V: Chemical, electrochemical, and technological aspects of sodium chlorate manufacture. Journal of The Electrochemical Society 1984, 131,7, 1551-1559.
  • 11. Li M., Twardowski Z., Mok F., Tam N.: Sodium molybdate - a possible alternate additive for sodium dichromate in the electrolytic production of sodium chlorate. Journal of Applied Electrochemistry 2007, 37, 4, 499-504.
  • 12. Su C. M., Ludwig R. D.: Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology 2005, 39, 16, 6208-6216.
  • 13. Cheremisinoff N. P.: Handbook of Solid Waste Management and Waste Minimization Technologies. Elsevier 2003.
  • 14. Cieślak-Golonka M.: Toxic and mutagenic effects of chromium(VI). A review. Polyhedron 1996, 15, 21, 3667-3689.
  • 15. Smith A. H., Steinmaus CM. Health Effects of Arsenic and Chromium in Drinking Water: Recent Human Findings. Annual Review of Public Health 2009, 30, 107-122.
  • 16. Huang F, Zhang H. Z., Banfield J. F.: Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters 2003, 3, 3, 373-378.
  • 17. Huang F., Zhang H. Z., Banfield J. F.: The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS. The Journal of Physical Chemistry A 2003, 107, 38,10470-10475.
  • 18. Huang F., Banfield J. F.: Size-dependent phase transformation kinetics in nanocrystalline ZnS. Journal of the American Chemical Society 2005, 127, 12, 4523-4529.
  • 19. Zhang J., Lin Z., Lan Y. Z., Ren G. Q., Chen D. G., Huang F., Hong M. C.: A multistep oriented attachment kinetics: Coarsening of ZnS nanoparticle in concentrated NaOH. Journal of the American Chemical Society 2006, 128, 39, 2981-2987.
  • 20. Liu W. Z., Huang F., Liao Y. Q., Zhang J., Ren G. Q., Zhuang Z. Y., Zhen J. S., Lin Z., Wang C.: Treatment of Cr-VI-containing Mg(OH) (2) nanowaste. Angewandte Chemie International Edition 2008,47, 30, 5619-5622.
  • 21. Liu W. Z., Huang F., Liao Y. Q., Zhang J., Ren G. Q., Zhuang Z. Y., Zhen J. S., Lin Z., Wang C.: Supporting Information-Treatment of Cr-VI-containing Mg(OH)(2) nanowaste. http://www.wiley-vch.de/contents/jc_2002/2008/ z800l72_s.pdf
  • 22. Liu W. Z., Xu X. J., Wang Y. J., He Z., Zhuo N., Huang F., Lin Z.: Treatment of Cr(VI)-containing nanowastes via the growth of nanomaterial. Chinese Science Bulletin 2010, 55, 4-5, 373-377.
  • 23. Qin G., Mcguire M. J., Blute N. K., Seidel C., Fong L.: Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: A pilot-scale study. Environmental Science & Technology 2005, 39, 16, 6321-6327.
  • 24. Yang J. E., Kim J. S., Ok Y. S., Yoo K. R.: Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons. Water Science and Technology 2007, 55, 1-2, 197-202.
  • 25. Rengaraj S., Yeon K. H., Moon S. H.: Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials 2001, 87, 1-3, 273-287.
  • 26. Korzenowski C., Rodrigues M., Bresciani L., Bernardes A. M., Ferreira J. Z.: Purification of spent chromium bath by membrane electrolysis. Journal of Hazardous Materials 2008, 152, 3, 960-967.
  • 27. Pagana A. E., Sklari S. D., Kikkinides E. S., Zaspalis V T.: Microporous ceramic membrane technology for the removal of arsenic and chromium ions from contaminated water. Microporous and Mesoporous Materials 2008, 110, I, 150-156.
  • 28. Qu J. H.: Research progress of novel adsorption processes in water purification: A review. Journal of Environmental Sciences-China 2008, 20, 1, 1-13.
  • 29. Wu Q. Z.: Potential applications of magnesium hydroxide for municipal wastewater treatment-Sludge digestion enhancement and nutrient removal. Ohio USA: University of Cincinnati, 2002.
  • 30. Moore R. C., Anderson D. R.: Arsenic removal from water. US7247242-BI, U. S. A.
  • 31. Lazaridis N. K., Karapantsios T D., Georgantas D.: Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Research 2003, 37, 12, 3023-3033.
  • 32. Shin H. S., Lee S. M.: Removal of nutrients in wastewater by using magnesium salts. Environ Technol. 1998, 19, 3, 283-90.
  • 33. Schlag S., Fujita K., Glauser J.: Stanford Research Institute Magnesium oxide and other magnesium chemicals. California: Chemical Economics Handbook, 2007.
  • 34. Gilbert B., Ono R. K., Ching K. A., Kim C.S.: The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. Journal of Colloid and Interface Science 2009, 339, 2, 285-295.
  • 35. Liu W. Z., Huang F., Wang Y. J., ZouT., Zheng J. S., Lin Z.: Recycling Mg(OH)(2) Nanoadsorbent during Treating the Low Concentration of Cr(VI). Environmental Science & Technology 201 1, 45, 5, 1955-1961.
  • 36. Zhuang Z. Y., Xu X. J., Wang Y. J., Huang F., Lin Z.: Treatment of nanowaste via fast crystal growth: With recycling of nano-SnO2 from electroplating sludge as a study case. Journal of Hazardous Materials 201 I, doi: 10.1016/j.jhazmat.2011.09.036.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP4-0001-0111
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.