PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Functionalization of surfaces is an important task for nanotechnology to add specially designed physico-chemical properties to materials. Besides chemical modification of surfaces, physical adaptations gain increasing interest. Thus, understanding the influences of film deposition on surface topography formation is the basis for future developments. For physical or chemical vapour deposited (PVD, CVD) films, structure zone models were developed, clearly showing the influences of temperature and vapour energy and, thus, surface and bulk diffusion on film structures based on four different structure zones. Generally, similar zones are also found in PVD coatings on polymeric substrates; However, due to restrictions in coating temperatures due to the thermal resistance of most polymers, the coating temperature is restricted to mostly 50°C, excluding thermal activation of at least surface diffusion of inorganic materials (metals and their nitrides, oxides, carbides, etc.) and resulting in columnar growth with dome-shaped column tops. Additionally, the high difference in mechanical properties between “stiff” inorganic coatings and “flexible” polymers implicates stress-induced growth phenomena, resulting in wrinkling, cracking and finally the formation of a superseding structure, depending on substrate and film materials and the vapour energy of the deposition method.
Rocznik
Strony
281--294
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] B. Rother and J. Vetter, Plasmabeschichtungsverfahren und Hartstoffschichten, Dt. Verlag f¨ur Grundstoffindustrie, Leipzig, 1992.
  • [2] S.M. Metev and V.P. Veiko, Laser-assisted Microtechnology, Springer, Berlin, 1998.
  • [3] A.D. Akhsakhalyan, B.A. Biryutin, S.V. Gaponov, A.A. Gudkov, and V.I. Luchin, “Processes occurring in an erosion plasma during laser vacuum deposition of films – 1. Properties of a laser erosion plasma in the inertial-expansion stage”, Soviet Physics. Technical Physics 27, 969–973 (1982).
  • [4] J.M. Lackner, “Industrially-scaled hybrid pulsed laser deposition at room temperature”, Habilitation Thesis, Polish Academy of Sciences – Institute of Metallurgy and Materials Science, Cracow, 2005.
  • [5] J.A. Thornton, “Influence of apparatus geometry and deposition conditions of the structure and topography of thick sputtered coatings”, J. Vacuum Science and Technology 11, 666–670 (1974).
  • [6] R. Messier, A.P. Giri, and R.A. Roy, “Revised structure zone model for thin film physical structure”, J. Vacuum Science and Technology A 2, 500–503 (1984).
  • [7] L. Hanley and S.B. Sinnott, “The growth and modification of materials via ion–surface processing” Surface Science 500, 500–522 (2002).
  • [8] J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985. Bull. Pol. Ac.: Tech. 58(2) 2010 293 J.M. Lackner, W. Waldhauser, A. Alamanou, C. Teichert, F. Schmied, L. Major, and B. Major
  • [9] D.C. Jacobs, “The role of internal energy and approach geometry in molecule/surface reactive scattering”, J. Physics: Condensed Matter 7, 1023–1045 (1995).
  • [10] K. Seshan, Handbook of Thin Film Deposition – Processes and Technologies, Noyes Publications/ William Andrew Publishing, Norwich, 2002.
  • [11] D.L. Smith, Thin Film Deposition: Principles and Practice, McGraw-Hill, New York, 1995.
  • [12] B.A. Movchan and A.V. Demchisin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide”, Physics of Metals and Metallography 28, 83–85 (1969).
  • [13] J.A. Thornton, “High rate thick film growth”, Annual Review of Materials Science 7, 239–260 (1977).
  • [14] M. Ohring, Materials Science of Thin Films: Deposition and Structure, Academic Press, New York, 2002.
  • [15] J.M. Lackner, “Innovative coating by pulsed laser deposition”, PhD Thesis, University of Leoben, Leoben, 2003.
  • [16] M. Kahn, PhD thesis, Montanuniversit¨at Leoben, Leoben, 2010, to be published.
  • [17] H. S¨achtling, Kunststoff-Handbuch, Hanser, M¨unchen, 1992.
  • [18] TrueGage, TrueMap v4.0, 2009.
  • [19] Nanotec, WSxM v3.0, 2009.
  • [20] D. Neˇcas and P. Klapetek, AFM and SPM software, Version 2.17, 2009.
  • [21] J.C. Teichert, “Self-organization of nanostructure in semiconductor heteroepitaxy”, Physics Report 365, 335–342 (2002).
  • [22] S.K. Sinha, E.B. Sirota, and S. Garoff, “X ray and neutron scattering from rough surfaces”, Phys. Rev. B 38 (4), 2297–2311 (1988).
  • [23] Ch. Teichert, A. Haas, G.M. Wallner, and R.W. Lang, “Nanometer scale of characterization of polymer films by atomic-force microscopy”, Macromolecular Symposia 181, 457–466 (2002).
  • [24] H. Jehn, Hartstoffschichten zur Verschleißminderung, Deutsche Gesellschaft f¨ur Metallkunde, Oberursel, 1987.
  • [25] W. Ensinger, “Low energy ion assist during deposition – an effective tool for controlling thin film microstructure”, Nuclear Instruments and Methods in Physics Research B 127/128, 796–808 (1997).
  • [26] J.M. Lackner, W. Waldhauser, and T. Sch¨oberl, “Film growth phenomena in high-energetic room temperature pulsed laser deposition on polymer surfaces”, Surface and Coatings Technology 201, 4037–4039 (2006).
  • [27] K.H. M¨uller, “Summary abstract: molecular dynamics studies of thin-film deposition”, J. Vacuum Science and Technology A6, 1690–1961 (1988).
  • [28] H.A. Durand, K. Sekine, K. Etoh, K. Ito, and I. Kataoka, “Relation of initial thin film formation to defects induced by low energy ions”, Thin Solid Films 336, 42–48 (1998).
  • [29] R. Major, J. Bonarski, J. Mogiel, B. Major, E. Czarnowska, R. Kustosz, J. M. Lackner, and W. Waldhauser, “Elastic TiN coating deposited on polyurethane by pulsed laser”, Surface and Coatings Technology 200, 6340–6345 (2006).
  • [30] D.S. Rickerby, A.M. Jones, and B.A. Bellamy, “X-ray diffraction studies of physically vapour-deposited coatings”, Surface and Coatings Technology 37, 111–137 (1989).
  • [31] D.S. Rickerby, G. Eckold, K.T. Scott, and I.M. Buckley-Golder, “The interrelationship between internal stress, processing parameters and microstructure of physically vapour deposited and thermally sprayed coatings”, Thin Solid Films 154, 125–141 (1987).
  • [32] J.M. Lackner, W. Waldhauser, R. Ebner, B. Major, and T. Sch¨oberl, “Structural, mechanical and tribological investigations of pulsed laser deposited titanium nitride coatings”, Thin Solid Films 453–454, 195–202 (2004).
  • [33] J.M. Lackner, W.Waldhauser, R. Berghauser, R. Ebner, B. Major, and A. Fian, G. Jakopic, „New trends in coating: Room temperature deposition of titanium-based films“, Materials Engineering 140, 611–615 (2004), (in Polish).
  • [34] X.-Y. Gong and D.R. Clarke, “On the measurement of strain in coatings formed on a wrinkled elastic substrate”, Oxidation Metals 50, 355–376 (1998).
  • [35] A. Kinbara, S. Baba, N. Matuda, and K. Takamisawa, “Mechanical properties of and cracks and wrinkles in vacuumdeposited MgF2, carbon and baron coatings”, Thin Solid Films 84, 205–212 (1981).
  • [36] N. Matuda, S. Baba, and A. Kinbara, “Internal stress, young’s modulus and adhesion energy of carbon films on glass substrates”, Thin Solid Films 81, 301–305 (1981).
  • [37] A. Pundt, E. Nikitin, P. Pekarski, and R. Kirchheim, “Adhesion energy between metal films and polymers obtained by studying buckling induced by hydrogen”, Acta Materialia 52, 1579–1587 (2004).
  • [38] K. Mylvaganam and L.C. Zhang, “Residual stress induced atomic scale buckling of diamond carbon coatings on silicon substrate”, Thin Solid Films 425, 145–149 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0020-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.