PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Verification of the Relationship Between The “In-Plane Geometric Con-Straints” used in Fracture Mechanics Problems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, numerical verification and catalogue of the numerical solutions based on Modify Boundary Layer Approach to determine the relationship between Q-stress and T-stress are presented. Based on the method proposed by Larsson and Carlsson, the Q-stress value are calculated for some elastic-plastic materials for different value of T-stress and external load expressed by J-integral. The influence of the external load, T-stress value and material properties on Q-stress value were tested. Such catalogue may be useful during solving the engineering problems, especially while is needed to determine real fracture toughness with including the geometric constraints, what was proposed in FITNET procedures.
Słowa kluczowe
Rocznik
Strony
38--47
Opis fizyczny
Bibliogr. 25 poz., Rys.
Twórcy
autor
  • Kielce University of Technology, Faculty of Mechatronics and Machine Design, Al. 1000-lecia PP 7, 25-314 Kielce, Poland, mgraba@tu.kielce.pl
Bibliografia
  • 1. ADINA (2008a), ADINA 8.5.4: ADINA: Theory and Modeling Guide - Volume I: ADINA, Report ARD 08-7, ADINA R&D, Inc., 2008.
  • 2. ADINA (2008b), ADINA 8.5.4: ADINA: User Interface Command Reference Manual - Volume I: ADINA Solids & Structures Model Definition, Report ARD 08-6, ADINA R&D, Inc., 2008.
  • 3. Ainsworth R.A., O'Dowd N.P. (1994), A Framework of Including Constraint Effects in the Failure Assessment Diagram Approach for Fracture Assessment, ASME Pressure Vessels and Piping Conference, PVP-Vol 287/MD-Vol47, ASME.
  • 4. Betegon, C. and Hancock, J.W. (1991), Two Parameter Characterization of Elastic-Plastic Crack Tip Fields, Journal of Applied Mechanics, Vol. 58, 104-110.
  • 5. Bilby, B.A., Cardew, G.E., Goldthorpe, M.R., Howard, I.C. (1986), A Finite Element Investigation of the Effects of Specimen Geometry on the Fields of Stress and Strain at the Tips of Stationary Cracks, Size Effects in Fracture, Institute of Mechanical Engineers, London, 37-46.
  • 6. FITNET Fitness for Serwice Procedure – Final Draft (2006), Edited by M. Koçak, S. Webster, JJ. Janosh, RA. Ainsworth, R. Koers.
  • 7. Gałkiewicz J., Graba M. (2006), Algorithm for Determination of Functions in Hutchinson-Rice-Rosengren Solution and its 3d Generalization, Journal of Theoretical and Applied Mechanics, Vol. 44, No. 1, 19-30.
  • 8. Hutchinson J. W. (1968), Singular Behaviour at the End of a Tensile Crack in a Hardening Material, Journal of the Mechanics and Physics of Solids, 16, 13-31.
  • 9. Irwin, G.R. (1957), Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, Journal of Applied Mechanics, Vol. 24, 361-364.
  • 10. Leevers P.S., Radon J.C. (1983), Inherent Stress Biaxiality in Various Fracture Specimen Geometries, International Journal of Fracture, 19, 311-325
  • 11. McMeeking, R.M. and Parks, D.M. (1979), On Criteria for J-Dominance of Crack Tip Fields in Large-Scale Yielding, ASTM STP 668, American Society for Testing and Materials, Philadelphia, 175-194.
  • 12. Neimitz A., Graba M., Gałkiewicz J. (2007), An Alternative Formulation of the Ritchie-Knott-Rice Local Fracture Criterion, Engineering Fracture Mechanics, Vol. 74, 1308-1322.
  • 13. O’Dowd N. P. (1995), Applications of two parameter approaches in elastic-plastic fracture mechanics, Engineering Fracture Mechanics, Vol. 52, No. 3, 445-46.
  • 14. O’Dowd N. P., Shih C. F. (1992), Family of Crack-Tip Fields Characterized by a Triaxiality Parameter – II. Fracture Applications, J. Mech. Phys. Solids, Vol. 40, No. 5, 939-963.
  • 15. O’Dowd N. P., Shih C.F. (1991), Family of Crack-Tip Fields Characterized by a Triaxiality Parameter – I. Structure of Fields, J. Mech. Phys. Solids, Vol. 39, No. 8, 989-1015.
  • 16. Rice J. R., Rosengren G. F. (1968), Plane Strain Deformation Near a Crack Tip in a Power-law Hardening Material, Journal of the Mechanics and Physics of Solids, 16, 1-12.
  • 17. Rice, J.R. (1968), A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, Vol. 35, pp. 379-386.
  • 18. Sherry A.H., Hooton D.G., Beardsmore D.W., Lidbury D.P.G.(2005), Material constraint parameters for the assessment of shallow defects in structural components – Part II: constraint – based assessment of shallow cracks, Engineering Fracture Mechanics, 72, 2396-2415.
  • 19. Sherry A.H.,France C.C., Goldthorpe M.R. (1995), Compendium of T-stress solutions for two and three dimensional cracked geometries, Fatigue & Fracture of Engineering Materials & Structures, Vol. 18, No. 1, 141-155.
  • 20. Sherry, A.H., Wilkes M.A., Beardsmore D.W., Lidbury D.P.G.(2005), Material constraint parameters for the assessment of shallow defects in structural components – Part I: Parameter solutions, Engineering Fracture Mechanics, 72, 2373-2395.
  • 21. SINTAP (1999), SINTAP: Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project No BE95-1426. – Rotherham: British Steel.
  • 22. Sneddon, I.N. (1946), The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid, Proceedings, Royal Society of London, Vol. A-187, 229-260.
  • 23. Sumpter J. G. D., Forbes A. T. (1992), Constraint based analysis of shallow cracks in mild steels, Proceedings of TWI/EWI/IS Int. Conf on Shallow Crack Fracture Mechanics, Toughness Tests and Applications, Paper 7, Cambridge U.K.
  • 24. Westergaard, H.M. (1939), Bearing Pressures and Cracks, Journal of Applied Mechanics, Vol. 6, 49-53.
  • 25. Williams, M.L. (1957), On the Stress Distribution at the Base of a Stationary Crack, Journal of Applied Mechanics, Vol. 24, 109-114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0068-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.