PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On micro-damage in hot metal working. P. 2 Constitutive modelling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Damage constitutive equations are formulated to model the evolution of grain boundary and plasticity-induced damage for free-cutting steels under hot forming conditions. During high temperature, high strain rate deformation, material degradation has characteristics of both creep damage at grain boundaries, and ductile damage surrounding hard inclusions. This has been experimentally observed and is reported in the companion paper. This paper describes the development of unified viscoplastic-damage constitutive equations, in which the nucleation and growth of both damage types are considered independently. The effects of deformation rate, temperature, and material microstructure on damage evolution are modelled. The proposed damage evolution equations are combined with a viscoplastic constitutive equation set, enabling the evolution of dislocation hardening, recovery, recrystallisation, grain size, and damage to be modelled. This set of unified, mechanism-based, viscoplastic damage constitutive equations is determined from experimental data of a freemachining steel for the temperature range 1173- 1373 K. The fitted model is then used to predict damage and failure features of the same material tested using a set of interrupted constant strain rate tests. Close agreement between the predicted and experimental results is obtained for all the cases studied.
Rocznik
Strony
43--60
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
  • University of Birmingham, Departament of Manufacturing and Mechanical Engineering, Edgbaston, Birmingham B15 2TT, UK
Bibliografia
  • 1. A.L. GURSON, Continuum theory of ductile rupture by void nucleation and growth: Part 1 - Yield Criteria and Flow Rules for Porous Ductile Media, J. Engng. Matr. Tech., 99, 1977.
  • 2. L.M. KACHANOV, Time to the rupture process under creep conditions, Izv. Akad. SSR. Oid. Tekh. Nauk, 8, 26-31, 1958.
  • 3. J. LIN, D.R. HAYHURST, and B.F. DYSON, The standard ridges uniaxial creep testpiece: computed accuracy of creep strain, J. of Strain Analysis, 28, 2, 101-115, 1993.
  • 4. B.F. DYSON, Creep and fracture of metals: mechanisms and mechanics, Revue Phys. Appl, 23, 605-613, 1988.
  • 5. A.C.F. COCKS and M.F. ASHBY, On creep fracture by void growth, Progress in Material Science, 27, 189-244, 1982.
  • 6. J.R. RICE and D.M. TRACEY, On the ductile enlargement of voids in triaxial stress fields, J. of the Mechanics and Physics of Solids, 17, 201-217, 1969.
  • 7. N. BONORA, Identification and measurement of ductile damage parameters, J. of Strain Analysis, 34, 463-478 1999.
  • 8. S. DHAR, et a/., A continuum damage mechanics model for ductile fracture, International Journal of Pressure Vessels and Piping, 77, 335-344, 2000.
  • 9. J.S. VETRANO, et al, Evidence for excess vacancies at sliding grain boundaries during superplastic deformation, Acta Materialia, 47, 4125-4129, 1999.
  • 10. M.A. KHALEEL, et al., Constitutive modeling of deformation and damage in superplastic materials, International J. of Plasticity, 17, 277-296, 2001.
  • 11. D.R. HAYHURST, Creep rupture under multi-axial states of stress, J. Mech. Phys. Solids, 20, 381-390, 1972.
  • 12. J. LIN and Y. Liu, A set of unified constitutive equations for modelling micro structure evolution in hot deformation, J. of Materials Processing Technology, 143—144, 281-285, 2003.
  • 13. L.G. LIM and F.P.E. DUNNE, Modelling central bursting in the extrusion of particulate reinforced metal matrix composite materials, Int. J. of Machine Tools and Manufacture, 37, 901-915, 1997.
  • 14. A.A. HOWE, D.C.J. FARRUGIA, Alloy design: from composition to through process models, Materials Science and Technology, 15, 15-21, 1999.
  • 15. J. LIN, F.P.E. DUNNE and D.R. HAYHURST, Physically-based temperature dependence of elastic viscoplastic constitutive equations for copper between 20 and 500 ° C, Philosophical Magazine, A, 74, 2, 655-676, 1996.
  • 16. B. Li, J. LIN, and X. YAO, A novel evolutionary algorithm for determining unified creep damage constitutive equations, Int. J. of Mech. Sci., 44, 5, 987-1002, 2002.
  • 17. J. LIN, B.H. CHEONG, and X. YAO, Universal multi-objective function for optimising superplastic-damage constitutive equations, J. of Mat. Proc. Tech., 125—126, 199-205, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB1-0030-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.