PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composite layers on titanium and Ti6Al4V alloy for medical applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The paper presents the possibility of creating biomaterials through designing bioceramic composite layers on cpTi and Ti6Al4V alloy by hybrid method. TiN+Ti2N+áTi(N) and SiO2-TiO2 intermediate layer were produced by glow-discharge nitriding and sol-gel methods, respectively. Finally, hydroxyapatite nano-film deposited by electrophoresis. Design/methodology/approach: The composite bioceramic systems were characterized from the standpoint of microstructure and morphology analysis of surface layers. The study was performed by X-ray diffraction technique, IR-fourier transform, SEM, AFM and in SBF (bioactivity). Wear resistance in environmental conditions (laboratory air) and in simulated body fluid (SBF) were carried out by pin-on-disc method. Findings: The suggested innovative hybrid method allows the manufacture of the bioceramic composite layers with definite microstructure, phasic and chemical composition and surface topography. The intermediate layers are characterized by low thickness, good structural homogeneity, satisfying bonding with a metal substrate, whereas, external hydroxyapatite layer is very thin, homogenous, bioactive and durable. Research limitations/implications: It seems necessary to conduct further investigation in the field of adhesion of composite systems and, particularly, biological study of capabilities of bone tissue and bacteriological behaviour in the environment of implant with studied layers. Practical implications: The high layer quality, bioactivity and possibility of improving the mechanical properties of hydroxyapatite, it is advantageous to produce composite systems with TiN+Ti2N+áTi and SiO2-TiO2 intermediate layers. Originality/value: The modification of the surface of metal substrate, produced by the hybrid method, may be an effective way to form a new generation of titanium biomaterials.
Rocznik
Strony
162--169
Opis fizyczny
Bibliogr. 37 poz., rys., tabl.
Twórcy
autor
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, b.surowska@pollub.pl
Bibliografia
  • [1] J. Breme, Y. Zhou, L. Groh, Development of a titanium alloy suitable for an optimized coating with hydroxyapatite, Biomaterials 3 (1995) 239-244.
  • [2] X. Liu, PK. Chu, Ch. Ding, Surface modification of titanium, titanium alloys and related materials for biomedical applications, Materials Science and Engineering R: Reports 47 (2004) 49-121.
  • [3] F.H. Jones, Teeth and bones: applications of surface science to dental materials and related biomaterials, Surface Science Reports 42 (2001) 75-205.
  • [4] M. Tirrell, E. Kokkoli, M. Biegalski, The role of surface science in bioengineered materials, Surface Science 83 (2002) 61-83.
  • [5] A. Montenero, G. Gnappi, F. Ferrari, M. Cesari, E. Salvioli, L. Mattogno, S. Kaciulis, M. Fini, Sol-gel derived hydroxyapatite coatings on titanium substrate, Journal of Materials Science 35 (2000) 2791-2797.
  • [6] A. Belcarz, B. Bieniaż, B. Surowska, G. Ginalska, Studies of bacterial adhesion on TiN, SiO2-TiO2 and hydroxyapatite thin layers deposited on titanium and Ti6Al4V alloy for medical applications, Thin Solid Films 519/2 (2010) 559-956.
  • [7] M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, J.H Evans, Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach, Journal of Sol-Gel Science and Technology 21 (2001) 39-48.
  • [8] L. Guo, H. Li, Fabrication and characterization of thin nano-hydroxyapatite coatings on titanium, Surface and Coatings Technology 185 (2004) 268-274.
  • [9] M.J. Alam, D.C. Cameron, Preparation and characterization of TiO2 thin films by sol-gel method, Journal of Sol-Gel Science and Technology 25 (2002) 137-145.
  • [10] N.K. Kuromoto, R.A. Simao, G.A. Soares, Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages, Materials Characterization 58 (2007) 114-121.
  • [11] W. Weng, G. Shen, G. Han, Low temperature preparation of hydroxyapatite coatings on titanium alloy by sol-gel route, Journal of Materials Science Letters 19 (2000) 2187-2188.
  • [12] T. Wierzchoń, Structure and properties of multicomponent and composite layers produced by combined surface engineering methods, Surface and Coatings Technology 180-181 (2004) 458-456.
  • [13] B. Surowska, J. Bieniaż, M. Walczak, K. Sangwal, A. Stoch, Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy, Applied Surface Science 238 (2004) 288-294.
  • [14] A. Stoch, A. Brożek, G. Kmita, J. Stoch, W. Jastrzębski, A. Rakowska, Electrophoretic coating of hydroxyapatite on titanium implants, Journal of Molecular Structure 569 (2001) 191-200.
  • [15] B.J. Nablo, A.R. Rothrock, M.H. Schoenfisch, Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants, Biomaterials 26 (2005) 917-924.
  • [16] E. Czarnowska, T. Wierzchoń, A. Maranda-NiedBała, E. Karczmarewicz, Improvement of titanium alloy for biomedical applications by nitriding and carbonitriding processes under glow discharge conditions, Journal of Materials Science: Materials in Medicine 11 (2000) 73-81.
  • [17] J. Bieniaż, A. Stoch, B. Surowska, M. Walczak, The study of the corrosion behavior of SiO2 and SiO2-TiO2 bioceramic coatings on titanium and Ti6Al4V alloy in dentistry, Engineering of Biomaterials 58 (2006) 62-64 (in Polish).
  • [18] C.E. Wen, W. Xu, W.Y. Hu, P.D. Hodgson, Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications, Acta Biomaterialia 3 (2007) 403-410.
  • [19] J. Bieniaż J.B. Surowska, A. Stoch, H. Matraszek, M. Walczak, The influence of SiO2 and SiO2-TiO2 intermediate coatings on bond strength of titanium and Ti6Al4V alloy to dental porcelain, Dental Materials 25 (2009) 1128-1135.
  • [20] S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, G. Gnappi, Surface analysis of biocompatible coatings on titanium, The Journal of Electron Spectroscopy and Related Phenomena 95 (1998) 61-69.
  • [21] B. Surowska, J. Bieniaż, Characterization of titanium nitride layer on titanium alloy, Materials Engineering 3 (2010) 332-335 (in Polish).
  • [22] M. Inagaki, Y. Yokogawa, T. Kameyama, Bond strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma spraying, Surface and Coatings Technology 1 (2003) 1-8.
  • [23] M. Keshmiri, T. Troczynski, Apatite formation on TiO2 anatase microspheres, Journal of Non-Crystalline Solids 324 (2003) 289-294.
  • [24] Y.L. Jeyachandran, S. Venkatachalam, B. Karunagaran, S.K. Narayandass, D. Mangalaraj, CY. Bao, CL. Zhang, Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films, Materials Science and Engineering A C27 (2007) 35-41.
  • [25] L. Yu-Peng, L. Mu-Sen, L. Shi-Tong, W. Zhi-Gang, Z. Rui-Fu, Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate, Biomaterials 18 (2004) 4393-4403.
  • [26] E. Milella, F. Cosentino, A. Licciulli, C. Massaro, Preparation and characterization of titania/hydroxyapatite composite coatings obtained by sol-gel process, Biomaterials 22 (2001) 425-1431.
  • [27] Ch. Cui, H. Liu, Y. Li, J. Sun, R. Wang, S. Liu, GA. Lindsay, Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials, Materials Letters 24-25 (2005) 3144-3148.
  • [28] D.B. Haddow, S. Kothari, P.F. James, R.D. Short, P.V. Hatton, R. van Noort, Synthetic implant surfaces: 1. The formation and characterization of sol-gel titania films, Biomaterials 5 (1996) 501-507.
  • [29] C. Guillén, M.A. Martínez, G. San Vicente, A. Morales, J. Herrero, Leveling effect of sol-gel SiO2 coatings onto metallic foil substrates, Surface and Coatings Technology 138 (2001) 205-210.
  • [30] L.L. Hench, Sol-gel materials for bioceramic applications, Current Opinion in Solid State and Materials Science 5 (1997) 604-610.
  • [31] Y. Oshida, A. Hashem, Titanium-porcelain system. Part I: Oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process, Bio-Medical Materials and Engineering 3 (1993) 185-198.
  • [32] M. Adachi, J.R. Mackert, E.E. Parry, C.W. Fairhurst, Oxide adherence and porcelain bonding to titanium and Ti-6Al-4V alloy, Journal of Dental Research 69 (1990) 1230-1235.
  • [33] H. Kimura, C.J. Horng, M. Okazaki, J. Takahashi, Oxidation effects on porcelain-titanium interface reactions and bond strength, Dental Materials Journal 9 (1990) 91-99.
  • [34] Y.C. Tsui, C. Doyle, T.W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 2: optimization of coating properties, Biomaterials 19 (1998) 2031-2043.
  • [35] L. Chou, B. Marek, W.R. Wagner, Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro, Biomaterials 20 (1999) 977-985.
  • [36] H. Li, K.A. Khor, P. Cheang, Properties of heat-treated calcium phosphate coatings deposited by high-velocity oxy-fuel (HVOF) spray, Biomaterials 23 (2002) 2105-2112.
  • [37] B. Surowska B, J. Bieniaż, T. Wierzchoń, M. Rokita, The study of wear resistance of bio-ceramic layers on titanium produced by hybryd metod, Biomaterials Engineering 77-80 (2008) 39-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0023-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.