PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation heat transfer modelling and CFD analysis of pulverised-coal combustion with staged air introduction

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modelling of fossil fuel utility and industrial boilers has reached a remarkable development in recent years. Particular attention in optimisation of a utility boiler furnace operation, is given to the flame geometry and position. Combustion chamber designers endeavour to achieve optimum operating conditions that give maximum combustion efficiency, as well as minimum pollutant formation rate. The application of computational fluid dynamics (CFD) modelling technique and other advanced mathematical methods offer opportunities for analysis, optimisation and options examination in order to increase the overall efficiency of the energy facilities. The main purpose of the present study was to investigate how the results obtained with two radiative heat transfer methods, the PI approximation method and the discrete ordinates (DO) method, fit temperature field in a boiler furnace on pulverised coal, with implemented over-fire air (OFA) ports. The framework of the CFD modelling approach is described. The numerical modelling results for boiler baseline operating conditions are com-pared with a test matrix of local temperature measurements. An accuracy analysis of the PI and DO methods is done on a basis of a comparison between the numerically obtained and measured temperature profiles.
Rocznik
Strony
97--118
Opis fizyczny
Bibliogr. 40 poz.,Rys., tab., wykr., wz
Twórcy
autor
  • University "Sts Cyril and Methodius", Faculty of Mechanical Engineering Karpos II, P.O. Box 464, Skopje 1000-MK, Republic of Macedonia, rfilko@mf.edu.mk
Bibliografia
  • [1] SCHNELL U.: Numerical modelling of solid fuel combustion processes using advanced CFD-based simulation tools, Progress in Computational Fluid Dynamics, Vol. 1, No. 4, 2001, 208-218.
  • [2] DIEZ L.I., CORTES C, CAMPO A.: Modelling of pulverised coal boilers: review and validation of on-line simulation techniques, Applied Thermal Engineering 25, 2005, 1516-1533.
  • [3] KUZNETSOV ET. AL. (ED.): Thermal calculation of boiler plants, Normative method, Izd. Energiya, Moskva-Leningrad, 1973 (in Russian).
  • [4] ZHURAVLEV Y.A., SIDOROV F.K., PROTSAYLO M.Y.: Application of zone method for calculation of heat transfer in boiler furnace, Teploenergetika, No. 11, 1980, 35-39 (in Russian).
  • [5] PROTSAYLO, M.Y., ZHURAVLEV, Y.A.: Investigation with zone method of the influence of regime parameters on the heat transfer in the P-67 boiler furnace, Teploenergetika, No. 4, 1983, 13-16 (in Russian).
  • [6] HOTTEL H.C, SAROFIM A.F.: Radiative Transfer, McGraw-Hill, 1967.
  • [7] BLOKH A.G.: Heat Transfer in Steam Boiler Furnaces, Hemisphere Publishing, London 1988.
  • [8] USTIMENKO B.P., DZHAKUPOV K.B., KROLY V.O.: Numerical modelling of aero-dynamics and combustion in furnace and technology plants, Izd. "Nauka", Alma Ata 1986 (in Russian).
  • [9] FIVELAND A.W., WESSEL A.R.: Numerical model for predicting performance of three-dimensional pulverized-fuel fired furnaces, Jour. of Eng. for Gas Turbines and Power, 1988, Vol. 110(11), 117-126.
  • [10] FAN J., QIAN L., MA Y., SUN P., CEN K.: Computational modelling of pulverized coal combustion processes in tangentially fired furnaces, Chemical Engineering Journal, Vol. 81(1), 2001, 261-269.
  • [11] JONES J.M., POURKASHANIAN M., WILLIAMS A., CHAKRABORTY R.K., SYKES J., LAURENCE D.: Modelling of coal combustion processes - a review of present status and future needs, Proc. of the 15th Annual International Pittsburgh Coal Conference, Pittsburgh, 1998, 1-20.
  • [12] EATON A.M., SMOOT L.D., HILL S.C., EATOUGH C.N.: Components, formulations, solutions, evaluation, and application of comprehensive combustion models, Progress in Energy and Combustion Science, Vol. 25 (4), 1999, 387-436.
  • [13] SMOOT L.D.: A decade of combustion research, Progress in Energy and Combustion Science, Vol. 23(3), 1997, 203-232.
  • [14] SMOOT L.D.: International Research centers' activities in coal combustion, Progress in Energy and Combustion Science, Vol. 24, 1998, 409-501.
  • [15] BOYD R.K., KENT J.H.: Three-dimensional furnace computer modelling, Proc. of the 21st Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1986, 265-274.
  • [16] HILL S.C, SMOOT L.D.: A comprehensive three-dimensional model for simulation of combustion systems: PCGC-3, Energy & Fuels, Vol. 7(6), 1993, 874-883.
  • [17] ZHOU X.Y., ZHENG C.G., MA Y.Y.: Comparison of several discrete arithmetic schemes for simulating a constrained jet and a lab-scale tangential fired furnace, Computer Methods in Applied Mechanics and Engineering, 1996, Vol. 130 (3-4),279-288.
  • [18] BERMUDEZ DE CASTRO A., FERIN J.L.: Modelling and numerical solution of a pulverized coal furnace, Proc. of the 4th Int. Conf. on Technologies and Combustion for Clean Environment, Lisbon, Portugal, paper 33.1, 1997, 1-9.
  • [19] ZHOU L.X., LI L., LI R. X., ZHANG J.: Simulation of 3-D gas-particle flows and coal combustion in a tangentially fired furnace using a two-fluid-trajectory model, Powder Technology, Vol. 125 (2), 2002, 226-233.
  • [20] YIN C, CAILLAT S., HARION J.L., BAUDOIN B., PEREZ E.: Investigation of the flow, combustion, heat-transfer and emissions from a 609 MW utility tangentially fired pulverized coal boiler, Fuel, Vol. 81(8), 2002, 997-1006.
  • [21] FIVELAND W.A.: Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method, J. Thermophysics, Vol. 2, No. 4, Oct. 1988.
  • [22] HE B., CHEN M., YU Q., LIU S., FAN L., SUN S., XU J., PAN W. P.: Numerical study of the optimum counter-flow mode of air jets in a large utility furnace, Computers & Fluids, Vol. 33(9), 2004, 1201-1223.
  • [23] PALLARES J. ET AL.: Integration of CFD codes and advanced combustion models for quantitative burnout determination, Fuel, 2007, doi:10.1016/j.fuel.2007.01. 036.
  • [24] KNAUS H., SCHNELL U., HEIN K.R.G.: On the modelling of coal combustion in a 550 MWel coal-fired utility boiler, Próg. in Comp. Fluid Dynamics, Vol. 1, No. 4, 2001, 194-207.
  • [25] RATZEL III, A.C, HOWELL ,J.R.: Two-dimensional radiation in absorbing-emitting media using the P-N approximation, J. of Heat Transfer, Transactions of the ASME, Vol. 105, 1983, 333-340.
  • [26] FILKOSKI R.V., PETROVSKI I.J., KARAS P.: Optimisation of pulverised coal combustion by means of CFD/CTA modelling, Thermal Science, Vol. 10, No 3, 2006, 161-179.
  • [27] FILKOSKI R.V., BELOSEVIC S.V., PETROVSKI I.J., OKA S.N., SIJERCIC M.A.: CFD technique as a tool for description of the phenomena occurring in pulverised coal combustion systems, Proc. IMechE, Vol. 221 Part A: J. Power and Energy, 2007, 399-409.
  • [28] TREE D. R., WEBB B. W.: Local temperature measurements in a full-scale utility boiler with overfire air, Fuel, Vol. 76, No. 11, 1997, 1057-1066.
  • [29] FILKOSKI R.V.: Modelling of thermal processes and optimisation of energetic-environmental characteristics of modern boiler plants, Ph. D. Thesis, Faculty of Mech. Eng., University "Ss Cyril and Methodius", Skopje 2004.
  • [30] WILCOX D. C: Turbulence Modelling for CFD, second edition, DWC Industries, La Canada, California 1998.
  • [31] NIELSEN P. V. (ED.) ET. AL.: CFD in Ventilation Design, Rehva, Federation of European Heating and Air-Conditioning Associations, Brussels 2007.
  • [32] KUO K.: Principles of Combustion, John Wiley & Sons, New York - Chichester -Brisbane - Toronto - Singapore 1986.
  • [33] KHALIL E. E.: Modelling of Furnaces and Combustors, Abacus Press, Tunbridge Wells, Kent 1982.
  • [34] SIEGEL R., HOWEL J.R.: Thermal Radiation Heat Transfer Hemisphere Publishing Corp., Washington D.C. 1992.
  • [35] GUO ZH., KUMAR S.: Three-dimensional discrete ordinates method in transient radiative transfer, J. of Thermophysics and Heat Transfer, Vol. 16, No. 3, July-September 2002, 289-296.
  • [36] DORRI-NOWKOORANI F., DOUGHERTY R. I.: Modified PN for correlation transfer in one-dimensional scattering and absorbing media, J. of Thermophysics and Heat Transfer, Vol. 16, No. 4, October-December, 2002, 529-536.
  • [37] SHAH N. G.: A new method of computation of radiant heat transfer in combustion chambers, Ph.D. Thesis, Imperial College of Science and Technology, London 1979.
  • [38] BLOKH A.G., KURAVLEV Y.A., RYZHKOV L.N.: Radiation Heat Transfer, Energoatomizdat, Moskva 1991 (in Russian).
  • [39] RUSAS J.: Numerical Simulation of gas-particle flow linked to pulverized coal combustion, Ph.D. Thesis, Institute of Energy Technology, Aalborg University, Aalborg 1998.
  • [40] MODEST M. F.: The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer, J. of Heat Transfer, Vol. 113, No. 3, August, 1991, 650-656.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2717-0535
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.