PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy metal accumulation, resistance and Physiological status of some epigeic and epiphytic lichens inhabiting Zn and Pb polluted areas

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal accumulation, physiological status and resistance against Zn and Pb were compared in lichens occurring in metalpolluted (Silesian Upland, S. Poland) and unpolluted (forest complex, NE Poland) areas. Sandy soil near Zn/Pb ore mine had significantly lower (5.35-times) metal content than dolomite-containing ground of mine tailing dump in polluted area (S. Poland). Metal contents in native lichens sampled from those sites followed the same pattern. Total Zn, Pb, Cd and Cu contents in native lichens recorded in two sites of Zn/Pb mining area varied broadly and were considerably higher than in lichens from a control unpolluted site. Independently of the sampling site, epiphytic lichens of higher surface to biovolume ratio (i.e. Candelariella Mull. Arg., Lepraria Ach.) accumulated much more metals (6.05 - 9.57 mg g[^-1] DW) than lichens of a lower ratio (e.g. 0.25 mg g[^-1]DW in Peltigera didactyla (With.) J.R.Laundon or 0.29 mg g[^-1] DW in some Cladonia Hill ex Browne). In general, the studied lichens accumulated metals in the following order: Zn>Pb>Cd=Cu, that was in agreement with the metal content in soils. However, Cladonia furcata (Huds.) Schrad. from tailing dump contained 2-fold more Pb than Zn. Internal Zn and Pb contents (non-exchangeable fraction) in the studied lichens ranged broadly from 17 to 90% of the total metal content. Phaeophytinisation quotients (PhQ), total chlorophyll contents and chl a/b ratios in the native lichens from polluted sites ranged 0.84 - 1.44; 0.514 - 4.858 mg g[^-1] DW and 2.09 - 5.56, respectively. Experimental exposure of selected species (Hypogymnia physodes (L.) Nyl., Hypocenomyce scalaris (Ach.) Choisy, Lepraria elobata Tonsberg, L. incana (L.) Ach., sampled from the both polluted and unpolluted sites, to high doses of Zn[^2+] and Pb[^2+] (0.36 or 0.72 mmol g[^-1] DW) revealed higher resistance of lichens from the Zn/Pb-polluted sites than con-specific lichens from the unpolluted one. The resistance of epiphytic species from the polluted area to high doses of Zn[^2+] and Pb[^2+] increased as follows: H. physodes
Rocznik
Strony
195--207
Opis fizyczny
Bibliogr. 47 poz.,
Twórcy
autor
  • Centre for Ecological Research, Polish Academy of Sciences, Experimental Station, Niecała 18/3, 20-080 Lublin, Poland, pawlik@golem.umsc.lublin.pl
Bibliografia
  • Backor M., Dvorsky K., Fahselt D. 2003 – Influence of invertebrate feeding on the lichen Cladonia pocillum – Symbiosis, 34: 281–291.
  • Backor M., Dzubaj A. 2004 – Short-term and chronic effects of copper, zinc and mercury on the chlorophyll content of four lichen photobiont and related alga – J. Hattori Bot. Lab., 95: 271–284.
  • Backor M., Pawlik-Skowrońska B., Budowa J., Skowroński T. 2007 – Response to copper and cadmium stress in wild-type and copper tolerant strains of the lichen alga Trebouxia erici: metal accumulation, toxicity and non-protein thiols – Plant Growth Regul., 52: 17–27.
  • Branquinho C. 2001– Lichens. (In: Metals in the Environment, Analysis by Biodiversity, Ed. M.N.V. Prasad) – Marcel Dekker Inc. New York, Basel, pp. 117–158.
  • Branquinho C., Brown D.H., Maguas C., Catarino F. 1997 – Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species - Environ. Exp. Bot., 37: 95–105.
  • Budka D., Przybyłowicz W.J., Mesjasz-Przybyłowicz J., Sawicka-Kapusta K. 2002 – Elemental distribution in lichens transplanted to polluted forest sites near Krakow (Poland) – Nucl. Instr. Meth. Phys. Res. Sec. B-Beam Inter. Mat. At., 189: 499-505.
  • Chettri M.K., Cook C.M., Vardaka E., Sawidis T., Lanaras T. 1998 – The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis – Environ. Exp. Bot., 39: 1–10.
  • Chettri M.K., Sawidis T., Zachariadis G.A., Stratis J.A. 1997 – Uptake of heavy metals by living and dead Cladonia thalli - Environ. Exp. Bot., 37: 39–52.
  • Conti M.E., Cecchetti G. 2001 – Biological monitoring: lichens as bioindicators of air pollution assessment – a review – Environ. Pollut., 114: 471–492.
  • Cuny D., Denayer F-O, de Foucaults B., Schumacker R., Colein P., Van Haluwyn C. 2004 – Patterns of metal soil contamination and changes in terrestrial cryptogamic communities – Environ. Pollut., 129: 289–297.
  • Czarnota P. 1995 – Micro- and macroelement content in Hypogymnia physodes thallus in Gorce National Park – an attempt at lichenoindication – Parki Narodowe i Rezerwaty Przyrody, 14: 69–88. (in Polish, English summary)
  • Dobson F.S. 2000 – Lichens. An illustrated guide to the British and Irish species – The Richmond Publishing Co., Ltd., England, pp 431.
  • Fałtynowicz W. 2003 – The Lichens, Lichenicolous and Allied Fungi of Poland – an annotated checklist – Polish Academy of Sciences, Kraków, pp 435.
  • Folkeson L., Andersson–Bringmark E. 1988 – Impoverishment of vegetation in a coniferous forest polluted by copper and zinc Can. J. Bot., 66: 417–428.
  • Garty J., Ronen R., Galun M. 1985 – Correlation between chlorophyll degradation and the amount of some elements in the lichen Ramalina duriaei (De Not.) Jatta – Environ. Exp. Bot., 25: 67–74.
  • Garty J., Karary Y., Harel J. 1993 – The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (De Not.) Bagl. transplanted to industrial sites in Israel – Arch. Environ. Contam. Toxicol., 24: 455–460.
  • Garty J. 2001 – Biomonitoring atmospheric heavy metals with lichens: theory and application - Crit. Rev. Plant Sci., 20: 309–371.
  • Garty J., Tamir O., Hassid I., Eshel A., Cohen Y., Karnieli A, Orlovsky L. 2001 – Photosynthesis, chlorophyll integrity and spectral reflectance in lichens exposed to air pollution – J. Environ. Qual., 30: 884–893.
  • Garty J., Weissman L., Tamir O., Beer S., Cohen Y., Karnieli A., Orlovsky L. 2000 – Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution - Physiol. Plant, 109: 410–418.
  • Godzik B. 1993 – Heavy metals content in plants from zinc dumps and reference areas – Pol. Bot. Stud., 5: 113–132.
  • Grodzińska K., Godzik B., Bieńkowski P. 1999 – Cladina stellaris (Opiz) Brodo as a bioindicator of atmospheric deposition on the Kola Penninsula, Russia – Polar Res., 18: 105–110.
  • Grodzińska K., Korzeniak U., Szarek-Łukaszewska G., Godzik B. 2000 – Colonization of zinc mine spoils in southern Poland – preliminary studies on vegetation, seed rain and seed bank – Frag. Flor. Geobot., 45(1–2): 123–145.
  • Hansen E.S. 1991 – The lichen flora near a lead-zinc mine at Maarmorilik in west Greenland – Lichenologist, 23: 381–391.
  • Hauck M., Paul A., Mulack C., Fritz E., Runge M. 2002 – Effects of manganese on the viability of vegetative diaspores of the epiphytic lichen Hypogymnia physodes – Environ. Exp. Bot., 47: 17–142.
  • Helios-Rybicka E. 1996 – Environmental impact of mining and smelting industries in Poland. (In: Environmental Geochemistry and Health. Eds: J.D. Appleton, R. Fuge, G.J.H. McCall) – Geological Society Special Publication No. 113, pp. 183–193.
  • Kiszka J. 2003 – Porosty hałd cynkowo-ołowiowych w Bolesławiu koło Olkusza [Lichens on Zn/Pb tailing dumps in Bolesław near Olkusz]. (In: Dynamika zmian środowiska geograficznego pod wpływem antropopresji, Ed. Lach J.) – Akademia Pedagogiczna, Kraków, pp. 193–199. (in Polish)
  • Kiszka J., Szarek-Łukaszewska G. 2006 – Porosty terenów po górnictwie cynkowo-ołowiowym w Bukownie koło Olkusza (Polska Południowa) [Lichens on post-mining area in Bukowno near Olkusz (S. Poland)] – Chrońmy Przyrodę Ojczystą Forum, pp 1–4. (in Polish, English summary)
  • Minger A., Krahebuhl U. 1997 – Moss and lichen as biomonitors for heavy metals – Intern. J. Environ. Anal. Chem., 67: 41–48.
  • Nowak J., Tobolewski Z. 1975 – Porosty polskie [Polish lichens] – PWN Warszawa-Kraków, pp 1177. (in Polish)
  • Orange A., James P.W., White F.J. 2001 - Microchemical Methods for the Identification of Lichens – Brit. Lich. Soc., pp. 101
  • Palmquist K., Campbell D., Ekblad A., Johansson H. 1998 – Photosynthetic capacity in relation to nitrogen content and its partitioning in lichens with different photobionts Plant. Cell Environ., 21: 361–372.
  • Pawlik-Skowrońska B., Purvis O.W., Pirszel J., Skowroński T. 2006 – Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine – The Lichenologist, 38: 267–275.
  • Pawlik-Skowrońska B., Sanita di Toppi L., Favali M.A., Fossati F., Pirszel J., Skowroński T. 2002 – Lichens respond to heavy metals by phytochelatin synthesis - New Phytologist, 156: 95–102.
  • Purvis O.W. 1993 – The botanical interest of mine spoil heaps – the lichen story – J. Russell Soc., 5: 45–48.
  • Purvis O.W. 1996 – Interactions of lichens with metals – Sci. Prog., 79: 283–309.
  • Purvis O.W., Halls C. 1996 – A review of lichens in metal-enriched environments – Lichenologist, 28: 571–601.
  • Purvis O.W., Pawlik-Skowrońska B. 2008 - Lichens and metals (In: Stress in Yeasts and Filamentous Fungi, Eds: S.V. Avery, M. Stratford, P. van West, ) – British Mycological Society Symposia Series. Academic Press Elsevier, pp 175–200.
  • Purvis O.W., Williamson B.J., Bartok K., Zoltani N. 2000 – Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions – New Phytol., 147:591–599.
  • Richardson D.H.S., Kiang S., Ahmadijan V., Nieboer E. 1985 – Lead and uranium uptake by lichens (In: Lichen Physiology and Cell biology Ed. Brown D.H.) – New York, USA. Plenum Press, pp 227–246.
  • Ronen R., Galun M. 1984 – Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation - Environ. Exper. Bot., 24: 239–245.
  • Sanita di Toppi L., Musetti R., Vattuone Z., Pawlik-Skowrońska B., Fossati F., Bertoli L., Badiani M., Favali M.A. 2005 – Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina - Microsc. Res. Techn., 66: 229–238.
  • Sarret G. Cuny D., Haluvyn C.V., Derulle S., Soldo Y., Eybent-Berard L., Menthonnex J. 1998 – Mechanisms of lichen resistance to metallic pollution – Environ. Sci. Technol., 32: 3325–3330.
  • Sawidis T., Chettri M.K., Zachariadis G.A., Stratis J.A., Seaward M.R.D. 1995 – Heavy metal bioaccumulation in lichens from Macedonia in northern Greece Toxicol. Environ. Chem., 50: 157–166.
  • Tarhanen S. 1998 – Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition – Ann. Bot., 82: 735–746.
  • Van Dobben H.F., Wolterbeek H.T., Wamelink G.W.W., Ter Braak C.J.F. 2001 – Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants - Environ. Pollut., 112: 163–169.
  • Wellburn A.R. 1996 – The spectral determination of chlorophylls a and b as well as total carotenoids, using various solvents with spectrophotometers of different resolution – J. Plant Physiol., 144: 307–313.
  • Wójciak H. 2007 – Flora Polski. Porosty, mszaki, paprotniki [Polish Flora. Lichens, mosses, ferns] – Multico OW, Warszawa, pp 368. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-2071-7727
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.