PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Viscoplastic material models for soil: new insight into the soil-support interaction in NATM tunnel excavations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the benefits gained from advanced material modeling of soil for the numerical simulation of soil-support interaction in tunneling processes according to the New Austrian Tunneling Method (NATM) are illustrated by means of plane-strain Finite Element (FE) analyses. The studies performed encompass different types of soil (cohesive and granular) and two types of support means (shotcrete lining and jet-grouted soil). As regards the latter, the early-age behavior of the cement-based components is taken into account by means of a coupled chemomechanical approach. The obtained results provide an insight into the benefits gained from the employed support means during NATM tunneling in different geological conditions, serving as the basis in the day-to-day decision process at NATM construction sites. Additionally, effects of the changing geological conditions on the soil-support interaction are illustrated.
Rocznik
Strony
209--240
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
  • Institute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13/202, A-1040 Vienna, Austria
autor
  • Institute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13/202, A-1040 Vienna, Austria
autor
  • Institute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13/202, A-1040 Vienna, Austria
autor
  • Institute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13/202, A-1040 Vienna, Austria
Bibliografia
  • 1. J.P. Bardet, Experimental soil mechanics, Prentice Hall, New Jersey 1997.
  • 2. Z.P. Bažant, A.B. Hauggard, S. Baweja, and F.–J. Ulm, Microprestress solidification theory for concrete creep, part I: Aging and drying effects. Journal of Engineering Mechanics, ASCE, 123, 11, 1188–1194, 1997.
  • 3. D. Boldini, R. Lackner, and H.A. Mang, Ground-shotcrete interaction of NATM tunnels with high overburden, Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 131, 7, 2005.
  • 4. R.I. Borja, R.A. Regueiro, and T.Y. Lai, FE modelling of strain localization in soft rock, Jounal of Geotechnical and Geoenvironmental Engineering, 126, 4, 335–343, 2000.
  • 5. R.I. Borja and C. Tamagnini, Numerical implementation of a mathematical model for finite strain elastoplastic consolidation, [in:] D.R.J. Owen, E. Oñate, and E. Hinton, [Eds.], Computational Plasticity, Proceedings of the 5-th International Conference, 1631–1640, CIMNE, Barcelona 1997.
  • 6. Ch. Brandstätter, R. Lackner, and H.A. Mang, Evaluation of properties of cementitious materials by means of temperature measurements: Application to jet grouting [in German], Bauingenieur, 77, 2, 51–57, 2002.
  • 7. Ch. Brandstätter, R. Lackner, Ch. Pichler, and H.A. Mang, Application of jet grouting in NATM tunneling, [in:] S. Valliappan et al., [Ed.], Proceedings of the 1-st Asian Pacific Congress on Computational Mechanics, Sydney, Australia 2001.
  • 8. G. Duvaut and J.L. Lions, The inequalities in mechanics and physics) [in French], Dunod, Paris 1972.
  • 9. E. Falk, Underground works in urban environment, [in:], Proceedings of the 14-th International Conference on Soil Mechanics and Foundation Engineering, 3, 1401–1406, Hamburg, Germany, 1997. Balkema Rotterdam.
  • 10. E. Falk, Compensation grouting – State of the art in tunneling [in German], [in:] H. Brandl [Ed.], Proceedings of the 3-rd Austrian Symposium on Geotechniques, 167–180, Vienna, Austria, 2001.
  • 11. P. Freiesleben Hansen and E.J. Pedersen, Measurement device for controlling hardening of concrete [in Norwegian] Nordisk Betong, 1, 21–25, 1977.
  • 12. Keller Grundbau GmbH, The soilcrete – jet grouting process, brochure 67–3E.
  • 13. A.E. Groen and R. de Borst, Three-dimensional finite element analysis of tunnels and foundations, HERON, 42, 4, 183–214, 1997.
  • 14. Ch. Hellmich, M. Lechner, R. Lackner, J. Macht, and H.A. Mang, Creep in shotcrete tunnel shells, [in:] S. Murakami and N. Ohno, [Eds.], Creep in Structures 2000 – Proceedings of the 5-th IUTAM Symposium on Creep in Structures, 217–229, Nagoya Japan, 2001. Kluwer Academic Publishers, Dordrecht.
  • 15. Ch. Hellmich, F.-J. Ulm, and H. A. Mang, Consistent linearization in finite element analysis of coupled chemo-thermal problems with exo- or endothermal reactions, Computational Mechanics, 24, 4, 238–244, 1999.
  • 16. Ch. Hellmich, F.-J. Ulm, and H. A. Mang, Multisurface chemoplasticity I: Material model for shotcrete, Journal of Engineering Mechanics (ASCE), 125, 6, 692–701, 1999.
  • 17. Ch. Hellmich, F.-J. Ulm, and H. A. Mang, Multisurface chemoplasticity II: Numerical studies on NATM-tunneling, Journal of Engineering Mechanics (ASCE), 125, 6, 702–714, 1999.
  • 18. G. T. Houlsby, The use of a variable shear modulus in elastic-plastic models for clays, Computers and Geotechnics, 1, 3–13, 1985.
  • 19. R. Lackner, Ch. Hellmich, and H.A. Mang, Constitutive modeling of cementitious materials in the framework of chemoplasticity, International Journal for Numerical Methods in Engineering, 53, 10, 2357–2388, 2002.
  • 20. T. Marcher and P.A. Vermeer, Macromodelling of softening in non-cohesive soils, [in:] P.A. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding, and E. Ramm [Eds.], Continuous and discontinuous modelling of cohesive-frictional materials, Lecture Notes in Physics, 568, 89–108, Springer, Berlin 2001.
  • 21. Ch. Pichler, R. Lackner, L. Martak, and H.A. Mang, Optimization of jet-grouted support in NATM tunneling, International Journal for Numerical and Analytical Methods in Geomechanics, 28, 7–8, 781–796, 2004.
  • 22. Ch. Pichler, R. Lackner, Y. Spira, and H.A. Mang, Thermochemomechanical assessment of ground improvement by jet grouting in tunneling, Journal of Engineering Mechanics (ASCE), 129, 8, 951–962, 2003.
  • 23. R.A. Regueiro and R.I. Borja, A finite element model of localized deformation in frictional materials taking a strong discontinuity approach, Finite Elements in Analysis and Design, 33, 4, 283–315, 1999.
  • 24. W. Ruetz, Creep of cement in concrete and the influence of simultaneous shrinkage on this type of creep (in German), Deutscher Ausschuß für Stahlbeton, Heft 183, 1966.
  • 25. A. Schofield and P. Wroth, Critical state soil mechanics, McGraw-Hill, London 1968.
  • 26. J. Sercombe, Ch. Hellmich, F.-J. Ulm, and H. A. Mang, Modeling of early-age creep of shotcrete. I: model and model parameters, Journal of Engineering Mechanics (ASCE), 126, 3, 284–291, 2000.
  • 27. J.C. Simo and T.J.R. Hughes, Computational inelasticity, Springer, Berlin 1998.
  • 28. J.C. Simo, J.G. Kennedy, and S. Govindjee, Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, International Journal for Numerical Methods in Engineering, 26, 2161–2185, 1988.
  • 29. D. Sterpi, An analysis of geotechnical problems involving strain softening effects, International Journal for Numerical and Analytical Methods in Geomechanics, 23, 1427–1454, 1999.
  • 30. F-J. Ulm, Thermochemomechanical couplings in concretes: a first review (in French), Technical report, Laboratoires des Ponts et Chaussées, Paris 1998.
  • 31. F.-J. Ulm and O. Coussy, Modeling of thermochemomechanical couplings of concrete at early ages, Journal of Engineering Mechanics (ASCE), 121, 7, 785–794, 1995.
  • 32. F.-J. Ulm and O. Coussy, Strength growth as chemo-plastic hardening in early age concrete, Journal of Engineering Mechanics (ASCE), 122, 12, 1123–1132, 1996.
  • 33. F.J. Ulm and O. Coussy, What is a “massive” concrete structure at early ages? Some dimensional arguments, Journal of Engineering Mechanics, 127, 5, 512–522, 2001.
  • 34. I. Vardoulakis, M. Goldscheider, and G. Gudehus, Formation of shear bands in sand bodies as a bifurcation problem, International Journal for Numerical and Analytical Methods in Geomechanics, 2, 99–128, 1978.
  • 35. P.A. Vermeer and R. de Borst, Non-associated plasticity for soils, concrete and rock, HERON, 29, 3, 3–64, 1984.
  • 36. F.H. Wittmann, Creep and shrinkage mechanisms, Chapter 6, 129–161, Wiley, Chichester 1982.
  • 37. D.M. Wood, Soil Behaviour and critical state soil mechanis, Cambridge University Press, Cambridge 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0006-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.