PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupled thermoelasticity of a functionally graded cracked layer under thermomechanical shocks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates linear-elastic response of cracked functionally graded layers subjected to thermomechanical loading; classical coupled thermoelastic equations are used in the calculations. The coupled dynamical system of equations obtained from the extended finite element discretization is solved by the Newmark method in the time domain. Micromechanical models for conventional composites are used to estimate properties of functionally graded layer. The interaction integral is then employed to calculate the stress intensity factors at each time step. In addition, crack propagation phenomenon under thermomechanical shocks is investigated in this paper. We have used MATLAB software to implement the algorithm and related code of problem.
Rocznik
Strony
71--96
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
autor
Bibliografia
  • 1. T. Black, T. Belytschko, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Method Engin., 45, 601–620, 1999
  • 2. 2. N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Method Engin., 46, 1, 131–150, 1999.
  • 3. T. Belytschko, N. Moës, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements, Int. J. Numer. Method Engin., 50, 4, 993–1013, 2001.
  • 4. J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Method in Appl. Mech. and Engin., 139, 1-4, 289–314, 1996.
  • 5. T. Belytschko, H. Chen, J. Xu, G. Zi, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. for Num. Methods in Engin. 58, 1873–1905, 2003.
  • 6. P. Rozycki, N. Moës, E. Béchet, C. Dubois, X-FEM explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries, Comput. Method Appl. Mech. Eng., 197, 5, 349–363, 2008.
  • 7. C. Linder, F. Armero, Finite elements with embedded branching, Finite Elements in Analysis and Design, 45, 280–293, 2009.
  • 8. T. Menouillard, J.-H. Song, Q. Duan, T. Belytschko, Time dependent crack tip enrichment for dynamic crack propagation, Int. J. of Fract., 162, 33–49, 2010.
  • 9. N. Noda, Thermal stress intensity factor for functionally gradient plate with an edge crack, J. Therm. Stresses, 20, 3-4, 373–387, 1997.
  • 10. T. Fujimoto, N. Noda, Crack propagation in a functionally graded plate under thermal shock, Arch. Appl. Mech., 70, 6, 377–386, 2000.
  • 11. T. Fujimoto, N. Noda, Two crack growths in a functionally graded plate under thermal shock, J. Therm. Stresses, 24, 847–862, 2001.
  • 12. Z.-H. Jin, G.H. Paulino, Transient thermal stress analysis of an edge crack in a functionally graded material, Int. J. of Fract., 107, 73–98, 2001.
  • 13. Ch. Zhang, J. Sladek, V. Sladek, Effects of Material Gradients on Transient Dynamic Mode-III Stress Intensity Factors. International Journal of Solids and Structures, 40, 5251–5270, 2003.
  • 14. H.M. Xu, X.F. Yao, X.O. Feng, H.-Y. Yeh, Dynamic stress intensity factors of a semi-infinite crack in an orthotropic functionally graded material, Mechanics of Materials, 40, 1, 37–47, 2008.
  • 15. P. Hosseini-Tehrani, M.R. Eslami, H.R. Daghyani, Dynamic crack analysis under coupled thermoelastic assumption, J. Appl. Mech., 68, 4, 584–588, 2001.
  • 16. P. Hosseini-Tehrani, A.R. Hosseini-Godarzi, M. Tavangar, Boundary element analysis of stress intensity factor KI in some two- dimensional dynamic thermoelastic problems, Eng. Anal. B. E., 29, 232–240, 2005.
  • 17. M. Duflot, The extended finite element method in thermoelastic fracture mechanics, Int. J. Num. Meth. Engin., 74, 827–847, 2008.
  • 18. A. KC, J.-H. Kim, Interaction integrals for thermal fracture of functionally graded materials, Engin. Fract. Mech., 75, 2542–2565, 2008.
  • 19. H. Wang, Q.H. Qin, Meshless approach for thermo-mechanical analysis of functionally graded materials, Engin. Analy. Boundary Elem., 32, 9, 704–712, 2008.
  • 20. A. Zamani, M.R. Eslami, Coupled dynamical thermoelasticity of a functionally graded cracked layer, J. Therm. Stresses, 32, 969–985, 2009.
  • 21. A. Zamani, M.R. Eslami, Implementation of the extended finite element method for dynamic thermoelastic fracture initiation, Int. J. Solid Struc., 47, 1392–1404, 2010.
  • 22. Y. Feng, Z. Jin, Thermal fracture of functionally graded plate with parallel surface cracks, Acta Mechanica Solida Sinica, 22, 5, 453–464, 2009.
  • 23. A.V. Ekhlakov, O.M. Khay, Ch. Zhang, J. Sladek, V. Sladek, A BDEM for transient thermoelastic crack problems in functionally graded materials under thermal shock, Comp. Mater. Scie., 57, 30–37, 2012.
  • 24. A.V. Ekhlakov, O.M. Khay, Ch. Zhang, J. Sladek, V. Sladek, X.W. Gao, Thermoelastic crack analysis in functionally graded materials and structures by a BEM, Fatig. & Fract. Engin. Mater. & Struct., 35, 8, 742–766, 2012.
  • 25. R.B. Hetnarski, M.R. Eslami, Thermal Stresses – Advanced Theory and Applications, Springer, 2009.
  • 26. S. Mohammadi, Extended Finite Element Method, Blackwell Publishing Ltd, 2008.
  • 27. T. Jr. Hughes, The finite element method, Englewood Cliffs, New Jersey, Prentice-Hall INC. 1987.
  • 28. C.A. Gerlach, Computational methods for the dynamic response of cracked specimens, Ph.D Thesis, Northwestern university, Evanston, Illinois, 1999.
  • 29. J.R. Rice, A path-independent integral and the approximate analysis of strain concentration by notches and cracks, ASME J. Appl. Mech., 35, 2, 379–386, 1968.
  • 30. S.H. Song, G.H. Paulino, Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method, Int. J. Solid Struc., 43, 4830–4866, 2006.
  • 31. M.L. Williams, On the stress distribution at the base of a stationary crack, ASME J. Appl. Mech., 24, 1, 109–114, 1957.
  • 32. D.V. Swenson, A.R. Ingraffea, Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications, comp. mech., 3, 381–397, 1988.
  • 33. H. Hatta, M. Taya, Equivalent inclusion method for steady state heat conduction in composites, Int. J. Engin. Scie., 24, 520–524, 1986.
  • 34. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Materialia, 21, 571–574, 1973.
  • 35. Z.-H. Jin, R.C. Batra, Some basic fracture mechanics concepts in functionally graded materials, J. Mech. Phys. Solid, 44, 1221–1235, 1996.
  • 36. J.-H. Kim, G.H. Paulino, Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, ASME J. Appl. Mech., 69, 502–514, 2002.
  • 37. K.Y. Lee, K.B. Sim, Thermal shock stress intensity factor by Bueckner’s weight function method, Engin. Frac. Mech., 37, 4, 799–804, 1990.
  • 38. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, 1990.
  • 39. C.A. Duarte, O.N. Hamzeh, T.J. Liszka, W.W. Tworzydlo, A generalized finite element method for the simulation of three dimensional dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 190, 2227–2262, 2001.
  • 40. J. Réthoré, A. Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack growth using extended finite element method, Int. J. for Num. Methods in Engin., 63, 631–659, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0014-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.