PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of steel fibres on concrete behavior in 2D and 3D simulations using lattice model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quasi-static simulations of a concrete behaviour with steel fibres under uniaxial tension were carried out using a discrete irregular lattice model. Fibrous concrete was described at a meso-scale as a three-phase material composed of aggregate, cement matrix, steel fibres and interfacial zones between cement matrix and aggregate, and between cement matrix and steel fibres. The effect of the fibre interface strength, fibre volume, fibre orientation, fibre length and specimen size on the concrete behaviour was investigated. The results of two- and three-dimensional analyses were compared.
Rocznik
Strony
465--492
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk-Wreszcz, Poland, jkozicki@pg.gda.pl
Bibliografia
  • 1. S.A. Al-Taan, N.A. Ezzadeen, Flexural analysis of reinforced fibrous concrete members using the finite element method, Computers and Structures, 56, 6, 1065–1072, 1995.
  • 2. F. Altun, T. Haktanir, K. Ari, Effects of steel fiber addition on mechanical properties of concrete and RC beams, Construction and Building Materials, 21, 3, 654–662, 2007.
  • 3. P. Balaguru, S.P. Shah, Fiber reinforced cement composites, McGraw Hill, 1992.
  • 4. R.V. Balendran, F.P. Zhou, A. Nadeem, A.Y.T. Leung, Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete, Building and Environment, 37, 1361–1367, 2002.
  • 5. A. Bentur, S. Mindess, Fiber reinforced cementitious composites, Elsevier Applied Science, New York, 1990.
  • 6. J.E. Bolander, S. Saito, Discrete modeling of short-fiber reinforcement in cementitious composites, Adv. Cem. Based Mater., 6, 76–86, 1997.
  • 7. H. Chenkui, Z. Guofan, Properties of steel fibre reinforced concrete containing larger coarse aggregate, Cement and Concrete Composites, 17, 199–206, 1995.
  • 8. G. Cusatis, Z.P. Bazant, L. Cedolin, Confinement-shear lattice model for concrete damage in tension and compression: I. Theory, ASCE Journal of Engineering Mechanics, 129, 12, 1439–1448, 2003.
  • 9. S. Eckardt, C. Könke, Simulation of damage in concrete structures using multiscale models. Computational Modelling of Concrete Structures, EURO-C, G. Meschke, R. de Borst, H. Mang, N. Bicanic (Eds.), Taylor and Francis, 77–83, 2006.
  • 10. H. Falkner, V. Henke, Stahlfaserbeton- konstruktive Anwendungen, Beton- Und Stahlbetonbau, 95, 10, 597–606, 2000.
  • 11. P.A. Jones, S.A. Austin, P.J. Robins, Predicting the flexural load-deflection response of steel fibre reinforced concrete from strain, crack-width, fibre pull-out and distribution data, Materials and Structures, 41, 449–463, 2008.
  • 12. P. Kabele, Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites, Engineering Fracture Mechanics, 74, 194–209, 2007.
  • 13. K. Komlos, B. Babal, T. Nürnbergerova, Hybrid fibre-reinforced concrete under repeated loading, Nuclear Enginering and Design, 156, 195–200, 1995.
  • 14. A.G. Kooiman, C. van der Veen, J. C. Walraven, Design Relation for Steel Fibre Reinforced Concrete, Heron, 45, 275–307, 2000.
  • 15. J. Kozicki, Application of discrete models to describe fracture process in brittle materials, Phd Thesis, University of Gdańsk, Poland, 2007.
  • 16. J. Kozicki, J. Tejchman, Effect of aggregate structure on fracture process in concrete using 2D lattice model, Archives of Mechanics, 59, 4–5, 1–20, 2007.
  • 17. J. Kozicki, J. Tejchman, Modelling of fracture processes in concrete using a novel lattice model, Granular Matter, 10, 5, 399–405, 2008.
  • 18. J. Kozicki, F.V. Donze, A new open-source software developed for numerical simulations using discrete modeling methods, Computer Methods in Applied Mechanics and Engineering, 197, 4429–4443, 2008.
  • 19. N. Krstulovic-Opara, A.R. Haghayeghi, M. Haidar, P.D. Krauss, Use of conventional and high-performance steel-fiber reinforced concrete for bridge deck overlays, ACI Mater J., 92, 6, 669–677, 1995.
  • 20. V.C. Li, H. Horii, P. Kabele, T. Kanda, Y.M. Lim, Repair and retrofit with engineered cementitious composites, Engineering Fracture Mechanics, 65, 317–334, 2000.
  • 21. Z. Li, M.A. Perez Lara, J.E. Bolander, Restraining effects of fibers during non uniform drying of cement composites, Cement and Concrete Research, 36, 1643–1652, 2006.
  • 22. Y.Z. Lin, Tragverhalten von Stahlfaserbeton, Deutscher Ausschuss für Stahlbeton, Heft 494, Berlin, Beuth Verlag GmbH, 1999.
  • 23. T.Y. Lim, P. Paramaivam, S.L. Lee, Analytical model for tensile behaviour of steel-fibre concrete, ACI Materials Journal, 1987.
  • 24. Y. Mohammadi, S.P. Singh, S.K. Kaushik, Properties of steel fibrous in fresh and hardened state, Construction and Building Materials, 22, 956–965, 2008.
  • 25. F. Radtke, A. Simone, L.J. Sluys, A computational model for failure in fibre reinforced concrete including the influence of discrete fibre distributions, Proc. 1th Int. Conf. “Computational Technologies in Concrete Structures” CTCS’09, 767–781, 2009a.
  • 26. F. Radtke, A. Simone, L.J. Sluys, A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres, Engng. Fracture Mech., 77, 4, 597–620, 2010.
  • 27. C. Redon, J.-L. Chermant, Damage mechanics applied to concrete reinforced with amortphous cast iron fibers, concrete subjected to compression, Cement and Concrete Composites, 21, 197–204, 1999.
  • 28. S.P. Shah, B.V. Rangan, Fiber reinforced concrete properties, ACI Journal, 68, 2, 126–135, 1971.
  • 29. E. Schlangen, E.J. Garboczi, Fracture simulations of concrete using lattice models: computational aspects, Engineering Fracture Mechanics, 57, 319–332, 1997.
  • 30. B. Schnütgen, M. Teutsch, Beonbauwerke aus Stahlfaserbeton beim Umgang mit umweltgefährdenden Stoffen, Beton- und Stahlbetonbau, 96, 7, 451–457, 2001.
  • 31. D.V. Soulioti, N.M. Barkoula, A. Paipetis, T.E. Matikas, Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete, Strain, DOI 10.1111/j.1475-1305.2009.00652.x.
  • 32. J. Tejchman, J. Kozicki, Steel-fibrous concrete – experiments and a numerical discrete model, University of Gdańsk Publishers, 2009.
  • 33. J.G.M. van Mier, E. Schlangen, A. Vervuurt, Lattice type fracture models for concrete, Continuum Models for Materials with Microstructure, H.B. Mühlhaus [Ed.], John Wiley & Sons, 341–377, 1995.
  • 34. A. van Hauwaert, J.G.M. van Mier, Computational modeling of the fibre-matrix Bond in steel fibre reinforced concrete, Fracture Mechanics of Concrete Structures, H. Mihashi, K. Rokugo [Eds.], Aedificatio Publishers, Freiburg, Germany, 561–571, 1998.
  • 35. J.G.M. van Mier, M.R.A. van Vliet, Influence of microstructure of concrete on size/scale effects in tensile fracture, Engineering Fracture Mechanics, 70, 16, 2281–2306, 2003.
  • 36. J.C. Walraven, S. Grünewald, Regelung und Anwendung des Stahlfaserbetons in den Niederlanden. Stahlfaserbeton – ein unberechenbares Material?, Bauseminar 2002, Braun-schweig, 164, 47–63, 2002.
  • 37. R.J. Ward, V.C. Li, Dependence of flexural behavior of fiber reinforced mortar on material fracture resistance and beam size, ACI Materials Journals, 1990.
  • 38. R.F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development, Cement Concrete Compos., 19, 2, 107–122, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0010-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.