PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

With-Fracture Gurney Model to Estimate both Fragment and Blast Impulses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Work to extend Gurney’s model for fragment velocity to predict blast impulse is ongoing by means of analytical calculations, based on gas and casing dynamics, with comparisons to available experimental data. The issue of early case fracture, with release of explosive gases thus retaining a greater degree of momentum, is also addressed. The method is based on that of G.I. Taylor and can include both case material compressive fow stress and explosive properties such as Chapman-Jouguet pressure. Comparisons between this new Taylor-based theory and blast data from studies of cased charges are shown. The potential effects on blast output of casing dynamic material properties appear considerable. Dynamic testing of case metals is needed to confrm the yield stresses implied by the blast data. It is expected that this method will be useful to the researcher in a number of roles.
Słowa kluczowe
EN
Rocznik
Strony
175--186
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
Bibliografia
  • [1] Gurney R.W., The Initial Velocities of Fragments from Bombs, Shells and Grenades, Ballistics Research Laboratories Report 405, 1943.
  • [2] Hutchinson M.D., The Escape of Blast From Fragmenting Munitions Casings, Int. J. Impact Eng., 2009, 36(2), 185-192.
  • [3] Fisher E.M., The Effect of the Steel Case on the Air Blast from High Explosives, NAVORD Report 2753, 1953, (Naval Ordnance Lab., White Oak, MD, USA).
  • [4] Koch A., Arnold N., Estermann M., A Simple Relation between the Detonation Velocity of an Explosive and its Gurney Energy, Propellants Explos. Pyrotech., 2002, 27, 365-368.
  • [5] Taylor G.I., The Fragmentation of Tubular Bombs (1944), Scientific Papers of G.I. Taylor, Cambridge Univ. Press, 1963, 3, 387.
  • [6] Crowley A.B., The Effect of Munition Casings on Reducing Blast Over-pressures, Insensitive Munitions and Energetic Materials Technical Symposium IMEMTS, 2006.
  • [7] Dobratz B.M., Crawford P.C., LLNL Explosives Handbook, Properties of Chemical Explosives and Explosives Simulants, (UCRL-52997, Change 2), 1985.
  • [8] Dunnett J., Flynn D., Wharton J., Blast Algorithm Development: Definition of Modified Blast Algorithms for PBX Based Explosives, Insensitive Munitions and Energetic Materials Technical Symposium IMEMTS, 2006.
  • [9] Bishop V.J., James D.J., Blast and Fragments from Steel Cylinders Containing Poly-x-75, Poly-x-82, Poly-x-91, Torpex 4D and H6 Explosives, AWRE Report No. 032/73, 1973.
  • [10] Fried L.E., Glaesemann K.R., Howard W.M., Souers, P.C., Vitello P.A., Cheetah 4.0 Users’ Manual, Lawrence Livermore National Laboratory, CA 2004.
  • [11] Price D., Dependence of Damage Effects upon Detonation Parameters of Organic High Explosive, Chem. Rev., 1959, 59, 801-825.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0038-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.