PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spring method for modelling of particulate solid composed of spherical particles and weak matrix

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, a possibility of an approximation of elastic particulate composite with a network of elastic springs that undertake only axial forces is considered. It is assumed that the springs are equivalent to two hemispheres interacting through a weaker interface member. In a frame of the suggested approach, the description of the composite is limited to translational degrees of freedom, therefore, only a normal interaction between the spheres was considered. The methodology for calculation of the axial stiffness of the elastic springs and obtained solutions of the stiffness in explicit form are the main novelty of the article. A comparison of the stiffnesses of the springs obtained by the proposed methodology and by the three dimensional Finite Element Method (FEM) has shown a good agreement between them in a wide range of the ratio of the modulus of elasticity of the particles and matrix at four different distances between surfaces of the particles. A possibility of the approximation of particulate composite by springs was tested and discussed in details by comparing results of a mechanical response of a sample (under three different loading cases) modelled as a three dimensional solid and as a system comprised of the springs. The solutions were obtained by the FEM.
Rocznik
Strony
775--785
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Institute of Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
  • Institute of Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
autor
  • Institute of Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
autor
  • Polish Academy of Sciences, Pawińskiego ul. 5B, 02-106 Warszawa, Poland
  • Department of Strength of Materials and Engineering Mechanics, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania
Bibliografia
  • [1] Y. Sawamoto, H. Tsubota, Y. Kasai, N. Koshika, H. Morikawa, Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method, Engineering and Design 179 (2) (1998) 157–177.
  • [2] D. Griffiths, G.G.W. Mustoe, D.V. Gri, Modelling of elastic continua using a grillage of structural elements based on discrete element concepts, International Journal for Numerical Methods in Engineering 50 (7) (2001), 1759-1755.
  • [3] A. Hrennikoff, Solution of problems of elasticity by the framework method, Journal of Applied Mechanics 8 (1) (1941) 169–175.
  • [4] T. Kawai, New discrete models and their application to seismic response analysis of structures, Nuclear Engineering and Design 48 (1) (1978) 207–229.
  • [5] H. Herrmann, A. Hansen, S. Roux, Fracture of disordered, elastic lattices in two dimensions, Physical Review B 39 (1) (1989) 637–648.
  • [6] J.J.E. Bolander, H. Hikosaka, W.J. He, Fracture in concrete specimens of differing scale, Engineering Computations 15 (8) (1998) 1094–1116.
  • [7] G. Lilliu, J.G.M. Van Mier, 3D lattice type fracture model for concrete, Engineering Fracture Mechanics 70 (7–8) (2003) 927–941.
  • [8] Y. Liu, Z. You, Q. Dai, J. Mills-Beale, Review of advances in understanding impacts of mix composition characteristics on asphalt concrete (AC) mechanics, International Journal of Pavement Engineering 12 (2011) 385–405.
  • [9] J.X. Liu, S.C. Deng, N.G. Liang, Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete, Computational Mechanics 41 (2007) 647–660.
  • [10] B.L. Karihaloo, P.F. Shao, Q.Z. Xiao, Lattice modelling of the failure of particle composites, Engineering Fracture Mechanics 70 (17) (2003) 2385–2406.
  • [11] A. Ibrahimbegovic, A. Delaplace, Microscale and meso-scale discrete models for dynamic fracture of structures built of brittle material, Computers and Structures 81 (12) (2003) 1255–1265.
  • [12] J. Kozicki, J. Tejchman, Application of a cellular automaton to simulations of granular flow in silos, Granular Matter 7 (1) (2005) 45–54.
  • [13] D. André, I. Iordanoff, J. Charles, J. Néauport, Discrete element method to simulate continuous material by using the cohesive beam model, Computer Methods in Applied Mechanics and Engineering 213–216 (1) (2013) 113–125.
  • [14] D.O. Potyondy, P.A. Cundall, C. Lee, Modelling rock using bonded assemblies of circular particles, in: 2nd North American Rock Mechanics Symposium, 1996.
  • [15] J. Rojek, C. Labra, O. Su, E. Onate, Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters, International Journal of Solids and Structures 49 (2012) 1497–1517.
  • [16] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences 41 (8) (2004) 1329–1364.
  • [17] S. Pilkavičius, R. Kačianauskas, A. Norkus, Investigation of normal contact interaction between two bonded spherical particles, Scientific Journal MECHANIKA 18 (6) (2012) 632–639.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aea757ba-e6ff-4f79-8c4d-217cd953860a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.