Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we use a phenomenological model based on the Jiles-Atherton-Sablik model of stress affecting the magnetic hysteresis of magnetic materials as modified when stress goes past the yield stress. We use this to show that (1) the model produces sharp shearing of hysteresis curves, as seen experimentally and that (2) it also produces a step in the hysteresis loss at small residual plastic strain. We also find that the step in the hysteresis loss can be fitted to a power law, and find that the power law can be fitted by the power m=0.270, different from the mechanical Ludwik Law exponent, and reasonably close to the experimental 0.333 and 0.202. We will also suggest a method of measuring how plastically deformed the material is by suggesting how the dislocation density can be measured.
Wydawca
Czasopismo
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
- Applied Magnetics and Physical Modeling, 78240 San Antonio, TX, U.S.A
Bibliografia
- 1. Sablik M.J. and Jiles D.C., Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis, IEEE Trans. Magn. 29 (1993) 2113-2123.
- 2. Sablik M,J., Rios S., Landgraf F.J.G., et al., Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation, J. Appl. Phys. 97 (2005) 10E518-1 – 10E518-3.
- 3. Sablik M.J., Landgraf F.J.G., Modeling microstructural effects on hysteresis loops with the same maximum flux density, IEEE Trans. Magn. 39 (2003) 2528-2530.
- 4. Sablik M.J., Landgraf F.J.G., Magnabosco R., Fukuhara M., de Campos M.F., Machado R. Missell F.P., Fitting the flow curve of a plastically deformed silicon steel for the prediction of magnetic properties, J. Magn. Magn. Mater. 304 (2006) 155-158.
- 5. Sablik M.J., Yonamine T., Landgraf F.J.G., Modeling plastic deformation effects on hysteresis loops with the same maximum flux density in steels, IEEE Trans. Mag. 40 (2004) 3219-3226.
- 6. Szewczyk R., Salach J., Bieńkowski A., Modeling of magnetoelastic materials for force and torque sensors, Solid State Phenom. 144 (2009) 124-129.
- 7. Li J., Xu M., Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress, J. Appl. Phys. 110(6) (2011) 063918.
- 8. Zirka S. E., Moroz Y. I., Harrison R. G., Chwastek K., On physical aspects of the Jiles-Atherton hysteresis models, J. Appl. Phys. 112(4) (2012) 043916.
- 9. Nowicki M., Szewczyk R., Charubin T., Marusenkov A., Nosenko A., Kyrylchuk V., Modeling the hysteresis loop of ultra-high permeability amorphous alloy for space applications, Materials, 11(11) (2018) 2079.
- 10. Jakubas A., Chwastek K., A Simplified Sablik’s Approach to model the effect of compaction pressure on the shape of hysteresis loops in soft magnetic composite cores, Materials, 13(1) 2020, 170.
- 11. Landgraf F. J. G., Emura M. Losses and permeability improvement by stress relieving fully processed electrical steels with previous small deformations, J. Magn. Magn. Mater. 242 (2002) 152-156.
- 12. Chady T., Grochowalski J. M. Eddy current transducer with rotating permanent magnets to test planar conducting plates, Sensors, 19(6) (2019) 1408.
- 13. Kronmuller H., Magnetic techniques for the study of dislocations in ferromagnetic materials, Int. J. Nondestruct. Testing, 3 (1972) 314-321.
- 14. Astie B., Degauque J. et al., Influence of the dislocation structures on the magnetic and magnetomechanical properties of high-purity iron, IEEE Trans. Magn. 17 (1981) 2929-2931.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ad7babad-3462-4ab9-b8df-722969e02380