Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, an attempt to estimate the stage of the fatigue process using the Barkhausen noise method is studied. First, microstructural and static tensile tests were carried out and, subsequently, fatigue tests up to failure were conducted. After determination of the material behaviour in the assumed static and dynamic conditions, the interrupted fatigue tests were performed. Each specimen was stressed up to a different number of cycles corresponding to 10%, 30%, 50%, 70% and 90% of fatigue lifetime for the loading conditions considered. In the next step of the experimental programme, the specimens were subjected to the Barkhausen magnetic noise measurements. Various magnetic parameters coming from the rms Barkhausen noise envelopes were determined. The linear relationship betweenthe full-width at half-maximum (FWHM) of the Barkhausen noise envelope and the number of loading cycles to fracture was found. Specimens loaded up to a certain number of cycles were also subjected to a tensile test to assess an influence of fatigue on the fracture features.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
40--47
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
- Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. gen. Sylwester Kaliski 2, 00-908 Warsaw, Poland
autor
- Department of Vehicle Type-Approval & Testing, Motor Transport Institute, ul. Jagiellonska 80, 03-301 Warsaw, Poland
autor
- Department of Experimental Mechanics, Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- 1. Heyes AM. Automotive component failures. Eng Fail Anal. 1998;5(2):129–141. Available from: https://doi.org/10.1016/S1350-6307(98)00010-7
- 2. Meyers MA., Chawla KK. Mechanical behaviour of materials. Cam-bridge University Press, Cambridge, second edition, 2009.
- 3. Bhaumik SK. Fatigue fracture of crankshaft of an aircraft engine. Eng Fail Anal. 2002;9(3):255–263. Available from: https://doi.org/10.1016/S1350-6307(01)00022-X
- 4. Fonte M, Anes V, Duarte P, Reis L, Freitas M. Crankshaft failure analysis of a boxer diesel motor. Eng Fail Anal. 2015;5:109–115. Available from: https://doi.org/10.1016/j.engfailanal.2015.03.014
- 5. Godec M, Mandrino Dj, Jenko M. Investigation of the fracture of car’s drive shaft. Eng Fail Anal. 2009;16(4):1252–1261. Available from: https://doi.org/10.1016/j.engfailanal.2008.08.022
- 6. Tjernberg A. Fatigue lives for induction hardened shafts with subsur-face crack initiation. Eng Fail Anal. 2002; 9(1):45–61. Available from: https://doi.org/10.1016/S1350-6307(00)00036-4
- 7. Yu Z, Xu X. Failure analysis of an idler gear of diesel engine gear-box. Eng Fail Anal. 2006;13:1092–1100. Available from: https://doi.org/10.1016/j.engfailanal.2005.07.015
- 8. Chen B, Wang C, Wang P, Zheng S, Sun W. Research on fatigue damage in high-strength steel (FV520B) using nonlinear ultrasonic testing. Shock and Vibration 2020; 8(19):1–15. Available from: https://doi.org/10.1155/2020/8847704
- 9. Sarris G, Haslinger SG, Huthwaite P, Lowe MJS: Ultrasonic meth-ods for the detection of near surface fatigue damage. NDT & E Int. 2023;135:1–13. Available from: https://doi.org/10.1016/j.ndteint.2023.102790
- 10. Kowalczyk D, Aniszewicz A. Experimental and simulation tests of 1MN screw coupling. Problemy Kolejnictwa. Rail. Rep. 2022;194: 97–102. Available from: https://doi.org/10.36137/1943E
- 11. Bjørheim F, Siriwardane SC, Pavlou D. A review of fatigue damage detection and measurement techniques. Int. J. Fat. 2022;154:1–16. Available from: https://doi.org/10.1016/j.ijfatigue.2021.106556
- 12. Wu H, Ziman JA, Raghuraman SR, Nebel J-E, Weber F. Starke P.: Short-time fatigue life estimation for heat treated low carbon steels by applying electrical resistance and magnetic Barkhausen noise. Mate-rials. 2023;16:1–21. Available from: https://doi.org/10.3390/ma16010032
- 13. Roye W. Ultrasonic testing of spot welds in the automotive industry. Krautkramer, SD 298, 11/99, 6 pages.
- 14. Yuhas DE, Vorres CL, Remiasz JR, Gesch E, Yamane T. Non-destructive ultrasonic methods for quality assurance of brake pads. EuroBrake. 2012, April 16- 18th 2012, Dresden Germany.
- 15. Lamarre A. Ultrasonic phased-array for aircraft maintencance, Am-stredam, November 2009, 76 slides. Available from: https://ndt.aero/images/docs/UTPAfor%20maintenance.pdf
- 16. Wronkowicz A, Dragan K. Damage evaluation based on ultrasonic testing of composite aircraft elements and image analysis methods. MATEC Web of Conferences 204, IMIEC 2018, 06003. Available from: https://doi.org/10.1051/matecconf/201820406003
- 17. Luziński R, Ziemkiewicz J, Synaszko P, Zyluk A, Dragan KA. Com-parison of composite specimens damage area measurements per-formed using pulsed thermography and ultrasonic NDT methods. Fat. Air. Struc. 2019; 2019(11): 68–77. Available from: https://doi.org/10.2478/fas-2019-0007
- 18. Drelich R, Rosiak M, Pakuła M. Application of non-contact ultrasonic method in air to study fiber-cement corrugated boards, Bull. Pol. Ac. Tech., 2021;69(2). Available from: https://doi.org/10.24425/bpasts.2021.136740
- 19. Callejas A, Palma R, Hernández-Figueirido D, Rus G. Damage detection using ultrasonic techniques in Concrete-Filled Steel Tubes (CFSTS) columns. Sensors. 2022;22,4400. Available from: https://doi.org/10.3390/s2212440
- 20. Mackiewicz S. Possibilities of ultrasonic evaluation of energetic steels as a result longterm exploitation (in Polish). Materiały Konfe-rencyjne VII Sympozjum Informacyjno-Szkoleniowe „Diagnostyka i remonty długoeksploatowanych urządzeń energetycznych. Nowe problemy diagnostyczne na starych blokach energetycznych”, 05–07 October 2005, Ustroń, Poland.
- 21. Hirao M, Ogi H, Suzuki N, Ohtani T. Ultrasonic attenuation peak during fatigue of polycrystalline copper. Acta Mater. 2000;48:517–524. Available from: https://doi.org/10.1016/S1359-6454(99)00346-8
- 22. Luo Z, Meng Y, Fan S, Lin L. Assessment of surface/subsurface damage in early-stage fatigue: A new attempt based on LCR wave. Int. J Fat. 2023;170:107537. Available from: https://doi.org/10.1016/j.ijfatigue.2023.107537
- 23. Luo Z, Wang X, Ma Z, Zou L, Zhu X, Lin L. Combined quantitative evaluation on early-stage fatigue damage of coarse-grained austen-ite stainless steel based on EBSD and ultrasonic technique. Ultra-sonics 2020;103:106090. Available from: https://doi.org/10.1016/j.ultras.2020.106090
- 24. Kamaya M, Kuroda M. Fatigue damage evaluation using backscatter diffraction. Mater. Trans. 2011;52:1168–1176. Available from: https://doi.org/10.1016/S1359-6454(99)00346-810.2320/matertrans.M2011014
- 25. Luo Z, Dong H, Ma Z, Zou L, Zhu X, Lin L. Orientation relationship between ferrite and austenite and its influence on ultrasonic attenua-tion in cast austenitic stainless steel. Acta Physica Sinica. 2018;67: 238102. Available from: https://doi.org/10.7498/aps.67.20181251.
- 26. Piotrowski L, Augustyniak B, Chmielewski M, Tomaš I. The influence of plastic deformation on magnetoelastic properties of the CSN12021 grade steel. J Magn Magn Mater. 2009;321(15):2331–2335. Availa-ble from: https://doi.org/10.1016/j.jmmm.2009.02.028
- 27. Blaow M, Evans JT, Shaw BA. The effect of microstructure and applied stress on magnetic Barkhausen emission in induction hard-ened steel. J Mater Sci. 2007;42(12):4364–4371. Available from: https://doi.org/10.1007/s10853-006-0631-5
- 28. Piech T. Magnetic research. Application of Barkhausen effect (in Polish). Biuro Gamma, Warsaw, 1998.
- 29. Jiles D. Introduction to magnetism and magnetic materials. CRC Press, Boca Raton. 1998.
- 30. Guyon M, Mayos M. Nondestructive evaluation of fatigue damage of steels using magnetic techniques. Review of Progress in Quantitative Nondestructive Evaluation. 14. Edited by D.O. Thompson and D.E. Chimenti, Plenum Press, New York, 1995, 1717–1724.
- 31. Palma ES, Mansur TR, Ferreira Silna Jr S, Alvarenga Jr A. Fatigue damage assessment in AISI 8620 steel using Barkhausen noise. Int J Fat. 2005;27(6):659-665. Available from: https://doi.org/10.1016/j.ijfatigue.2004.11.005
- 32. da Silva Junior SF, Mansur TR, Aguiar AE, Palma ES, Marques PV. Damage accumulation study in fatigue testing using Barkhausen noise. Proceedings of COBEM 2003, 17th International Congress of Mechanical Engineering, 10–14 November 2003, Sao Paulo, Brazil. Available from: https://www.abcm.org.br/anais/cobem/2003/html/ pdf/COB03-0558.pdf
- 33. Sagar PS, Parida N, Das S, Dobmann G, Bhattacharya DK. Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. International Journal of Fatigue. 2005;27(3): 317–322. Available from: https://doi.org/10.1016/j.ijfatigue.2004.06.015
- 34. Augustyniak B, Piotrowski L, Chmielewski M, Kowalewski Z. Com-parative study with magnetic techniques of P91 and 13HMF steels properties subjected to fatigue tests. J Elec Eng. 2012;63(7):15–18. Available from: http://iris.elf.stuba.sk/JEEEC/data/pdf/7s_112-04.pdf.
- 35. Palma ES, Junior AA, Mansur TR, Pinto JMA. Fatigue damage in AISI/SAE 8620 steel. Proceedings of COBEM 2003, 17th Interna-tional Congress of Mechanical Engineering, 10–14 November 2003, Sao Paulo, Brazil. Available from: https://www.abcm.org.br /anais/cobem/2003/html/pdf/COB03-0066.pdf
- 36. Morsy MA, El-Kashif E. Repair welding reclamation of 42CrMo4 and C45 steels. Proceedings of IIW 2017 International Conference, June, 29-30 Shanghai, R.P. China.
- 37. Costa LL, Brito AMG., Rosiak A, Schaeffer L. Microstructure evolu-tion of 42CrMo4 during hot forging process of hollow shafts for wind turbines. Int. J Adv. Man. Tech. 2020; 106:511–517. Available from: https://doi.org/10.1007/s00170-019-04642-w
- 38. Fischer A, Scholtes B, Niendorf T. Influence of deep rolling and induction hardening on microstructure evolution of crankshaft sec-tions made from 38MnSiVS5 and 42CrMo4. HTM-J Heat Treat Ma-ter. 2021;76:175-179. Available from: https://doi.org/10.1515/htm-2021-0002
- 39. Basavaraj Y, Joshi R, Setty GR. FEA of NX-11 unigraphics modelled connecting rod using different materials. Mater Today: Proc. 2021;46:2807–2813. Available from: https://doi.org/10.1016/j.matpr.2021.02.620
- 40. Wieczorek AN. Studies on the combined impact of external dynamic forces and quartz abrasive on the wear of chain wheels made of 42CrMo4 steel which are used in conveyors [in Polish]. Autobusy. 2016;6:1207–1210.
- 41. Das S, Mukhopadhyay G, Bhattacharyya S. Failure analysis of axle shaft of a fork lift. Case Studies in Eng Fail Anal. 2015;3:46–51. Available from: https://doi.org/10.1016/j.csefa.2015.01.003
- 42. Moorthy V, Choudhury BK, Vaidyanathan S, Jayakumar T, Rao KBS, Raj B. An assessment of low cycle fatigue using magnetic Barkhau-sen emission in 9Cr-1Mo ferritic steel. Int J Fat. 1999;21(3):263–269. Available from: https://doi.org/10.1016/S0142-1123(98)00079-6
- 43. Polák J, Man J. Mechanisms of extrusion and intrusion formation in fatigue crystalline materials. Mater Sci Eng A. 2014;596:15-24. Available from: https://doi.org/10.1016/j.msea.2013.12.005
- 44. Anglada-Rivera J, Padovese LR, Capó-Sánchez J. Magnetic Bark-hausen noise and hysteresis loop in commercial carbon steel: influ-ence of applied tensile stress and grain size. J Magn Magn Mater. 2001;231(2-3):299–306. Available from: https://doi.org/10.1016/S0304-8853(01)00066-X
- 45. Stewart DM, Stevens KJ, Kaiser AB. Magnetic Barkhausen noise analysis of stress in steel. Curr Appl Phys. 2004;4(2-4):308–311. Available from: https://doi.org/10.1016/j.cap.2003.11.035
- 46. Tomita Y, Hashimoto K, Osawa N. Nondestructive estimation of fatigue damage for steel by Barkhausen noise analysis. NDT & E Inter. 1996;29(5):275–280. Available from: https://doi.org/10.1016/S0963-8695(96)00030-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acebddc3-95ae-4b2e-b6f9-bb2c972f634b