PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological and surface morphological characteristics of titanium alloys: a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Being easily fabricated, welded, biocompatible, having a high strength-to-weight ratio, withstanding comparatively high temperatures up to 800°C and low modulus of elasticity make grade titanium and its alloys an important choice for automotive, biomedical and aerospace industries. In contempt of the different pleasant assets of Ti-6Al-4V alloy, the operation of this alloy is restricted especially when it comes to tribological and surface morphological characteristics. Enhancing these properties is important, for this purpose, a diversity of attempts and studies have been conducted. This paper mounts a review of morphological and tribological behaviors of titanium alloys including Ti-6Al-4V against different materials counting with carbide tools and other types of materials under dry and lubricated sliding conditions. The surface morphological, wear, and other properties have been discussed in this review article.
Rocznik
Strony
art. no. e72, 1--23
Opis fizyczny
Bibliogr. 119 poz., il., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
  • Department of Mechanical Engineering, Karabuk University, Karabük, Turkey
  • Department of Mechanical Engineering, Karabuk University, Karabük, Turkey
  • Department of Mechanical Engineering, Kings Engineering College, Irungattukottai, Tamil Nadu, India
  • Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
  • Faculty of Mechanical Engineering, Cracow University of Technology, Krakow, Poland
autor
  • Yenice Vocational High School, Karabük University, Karabük, Turkey
  • Department of Automated Mechanical Engineering, South Ural State University, Chelyabinsk, Russia
Bibliografia
  • 1. Krajewska-Śpiewak J, Gawlik J, Piekoszewski W, Stachura K. Identification of residual stresses in a surface layer of Ti6AL4V and inconel 718 after process of peripheral milling. Tehnički vjesnik. 2018;25(1):88.
  • 2. Sullivan RM. Implant dentistry and the concept of osseo-integration: a historical perspective. J Calif Dent Assoc. 2001;29:737-745.
  • 3. Lyasota I, Kozub B, Gawlik J. Identification of the tensile damage of degraded carbon steel and ferritic alloy-steel by acoustic emission with in situ microscopic investigations. Arch Civ Mech Eng. 2019;19:274-285. https://doi.org/10.1016/j.acme.2018.09.011.
  • 4. Saleem W, Salah B, Velay X, Ahmad R, Khan R, Pruncu CI. Numerical modeling and analysis of Ti6Al4V alloy chip for biomedical applications. Materials. 2020. https://doi.org/10.3390/ma13225236.
  • 5. Pradeep NB, Hegde MMR, Manjunath Patel GC, Giasin K, Pimenov DY, Wojciechowski S. Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications. J Mater Res Technol. 2022;16:88-101.
  • 6. Straumal B, Korneva A, Zieęba P. Phase transitions in metallic alloys driven by the high pressure torsion. Arch Civ Mech Eng. 2014;14:242-249. https://doi.org/10.1016/j.acme.2013.07.002.
  • 7. Dong D, Xu H, Zhu D, Wang G, He Q, Lin J. Microstructure and mechanical properties of TiC/Ti matrix composites and Ti-48Al-2Cr-2Nb alloy joints brazed with Ti-28Ni eutectic filler alloy. Arch Civ Mech Eng. 2019;19:1259-67.
  • 8. Fashu S, Lototskyy M, Davids MW, Pickering L, Linkov V, Tai S, Renheng T, Fangming X, Fursikov PV, Tarasov BP. A review on crucibles for induction melting of titanium alloys. Mater Des. 2020;186: 108295.
  • 9. Gupta NK, Somani N, Prakash C, Singh R, Walia AS, Singh S, Pruncu CI. Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy. Materials. 2021. https://doi.org/10.3390/ma14092292.
  • 10. Kopec M, Brodecki A, Szczęsny G, Kowalewski ZL. Microstructural analysis of fractured orthopedic implants. Materials. 2021. https://doi.org/10.3390/ma14092209.
  • 11. Dutta Majumdar J, Manna I. Laser surface engineering of titanium and its alloys for improved wear, corrosion and high-temperature oxidation resistance. Sawston: Woodhead Publishing; 2015. p. 483-521.
  • 12. Su C, Yu H, Wang Z, Yang J, Zeng X. Controlling the tensile and fatigue properties of selective laser melted Ti-6Al-4V alloy by post treatment. J Alloys Compd. 2021;857: 157552.
  • 13. Hémery S, Stinville J-C. Microstructural and load hold effects on small fatigue crack growth in α+β dual phase Ti alloys. Int J Fatigue. 2021. https://doi.org/10.1016/j.ijfatigue.2021.106699.
  • 14. Korkmaz ME, Gupta MK, Waqar S, Kuntoğlu M, Krolczyk GM, Maruda RW, Pimenov DY. A short review on thermal treatments of titanium & nickel based alloys processed by selective laser melting. J Mater Res Technol. 2022;16:1090-1101.
  • 15. Jóźwik J, Ostrowski D, Milczarczyk R, Krolczyk GM. Analysis of relation between the 3D printer laser beam power and the surface morphology properties in Ti-6Al-4V titanium alloy parts. J Braz Soc Mech Sci Eng. 2018;40:215.
  • 16. Yaşar N, Korkmaz ME, Gupta MK, Boy M, Günay M. A novel method for improving drilling performance of CFRP/Ti6AL4V stacked materials. Int J Adv Manuf Technol. 2021;117:653-673. https://doi.org/10.1007/s00170-021-07758-0.
  • 17. Mia M, Gupta MK, Lozano JA, Carou D, Pimenov DY, Królczyk G, Khan AM, Dhar NR. Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. J Clean Prod. 2019;210:121-133.
  • 18. Singla AK, Singh J, Sharma VS, Gupta MK, Song Q, Rozumek D, Krolczyk GM. Impact of cryogenic treatment on HCF and FCP performance of β-solution treated Ti-6Al-4V ELI biomaterial. Materials. 2020. https://doi.org/10.3390/ma13030500.
  • 19. Garbiec D, Siwak P, Mróz A. Effect of compaction pressure and heating rate on microstructure and mechanical properties of spark plasma sintered Ti6Al4V alloy. Arch Civ Mech Eng. 2016;16:702-7.
  • 20. Krolczyk G, Sedmak A, Kumar U, Chattopadhyaya S, Das AK, Pramanik A. Study of heat-affected zone and mechanical properties of Nd-YAG laser welding process of thin titanium alloy sheet. Nat Resour Eng. 2016;1:51-58.
  • 21. Chauhan SR, Dass K. Dry sliding wear behaviour of titanium (Grade 5) alloy by using response surface methodology. Adv Tribol. 2013. https://doi.org/10.1155/2013/272106.
  • 22. Łȩpicka M, Gradzka-Dahlke M. Surface modification of Ti6Al4V titanium alloy for biomedical applications and its effect on tribological performance-a review. Rev Adv Mater Sci. 2016;46:86-103.
  • 23. Sreesha RB, Kumar D, Chandraker S, Agrawal A. Room temperature sliding wear behavior of Ti6Al4V: a review. AIP Conf Proc. 2021. https://doi.org/10.1063/5.0049962.
  • 24. Kaur S, Ghadirinejad K, Oskouei RH. An overview on the tribological performance of titanium alloys with surface modifications for biomedical applications. Lubricants. 2019. https://doi.org/10.3390/lubricants7080065.
  • 25. Jozwik J. Evaluation of tribological properties and condition of Ti6Al4V titanium alloy surface. Teh Vjesn TechGaz. 2018. https://doi.org/10.17559/TV-20160521145125.
  • 26. Krolczyk GM, Nieslony P, Legutko S. Determination of tool life and research wear during duplex stainless steel turning. Arch Civ Mech Eng. 2015;15:347-354. https://doi.org/10.1016/j.acme.2014.05.001.
  • 27. Sreesha RB, Kumar D, Chandraker S, Agrawal A. Room temperature sliding wear behavior of Ti6Al4V: a review. AIP Conf Proc. 2021. https://doi.org/10.1063/5.0049962.
  • 28. Nabhani F. Wear mechanisms of ultra-hard cutting tools materials. J Mater Process Technol. 2001;115:402-412. https://doi.org/ 10.1016/S0924-0136(01)00851-2.
  • 29. Kuntoğlu M, Sağlam H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement. 2019;140:427-436. https://doi.org/10.1016/j.measu rement.2019.04.022.
  • 30. Salur E, Aslan A, Kuntoglu M, Gunes A, Sahin OS. Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Compos Part B Eng. 2019;166:401-413. https://doi.org/10.1016/j.compositesb.2019. 02.023.
  • 31. Salur E, Kuntoğlu M, Aslan A, Pimenov DY. The effects of MQL and dry environments on tool wear, cutting temperature, and power consumption during end milling of AISI 1040 steel. Metals (Basel). 2021;11:1674.
  • 32. Kuntoğlu M, Sağlam H. ANOVA and fuzzy rule based evaluation and estimation of flank wear, temperature and acoustic emission in turning. CIRP J Manuf Sci Technol. 2021;35:589-603.
  • 33. Kuntoğlu M, Sağlam H. Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement. 2021;173: 108582. https://doi.org/10.1016/j. measurement.2020.108582.
  • 34. Grzesik W, Małecka J, Zalisz Z, Zak K, Niesłony P. Investigation of friction and wear mechanisms of TiAlV coated carbide against Ti6Al4V titanium alloy using pin-on-disc tribometer. Arch Mech Eng. 2016;63:113-127.
  • 35. Astakhov VP. Tribology of cutting tools. Tribol Manuf Technol. 2012. https://doi.org/10.1007/978-3-642-31683-8_1.
  • 36. Ghazali MF, Abdullah MM, Abd Rahim SZ, Gondro J, Pietrusiewicz P, Garus S, Stachowiak T, Sandu AV, Mohd Tahir MF, Korkmaz ME, Osman MS. Tool wear and surface evaluation in drilling fly ash geopolymer using HSS, HSS-Co, and HSS-TiN cutting tools. Materials. 2021. https://doi.org/10.3390/ma140 71628.
  • 37. Korkmaz ME, Gupta MK, Boy M, Yaşar N, Krolczyk GM, Günay M. Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80A. J Manuf Process. 2021;69:112-124. https://doi.org/10.1016/j.jmapro.2021. 07.039.
  • 38. Wojciechowski S, Chwalczuk T, Twardowski P, Krolczyk GM. Modeling of cutter displacements during ball end milling of inclined surfaces. Arch Civ Mech Eng. 2015;15:798-805. https:// doi.org/10.1016/j.acme.2015.06.008.
  • 39. Sharma S, Singh J, Gupta MK, Mia M, Dwivedi SP, Saxena A, Chattopadhyaya S, Singh R, Pimenov DY, Korkmaz ME. Investigation on mechanical, tribological and microstructural properties of Al-Mg-Si-T6/SiC/muscovite-hybrid metal-matrix composites for high strength applications. J Mater Res Technol. 2021;12:1564-81.
  • 40. Korkmaz ME, Yaşar N, Günay M. Numerical and experimental investigation of cutting forces in turning of Nimonic 80A super alloy. Eng Sci Technol an Int J. 2020;23:664-673. 41. Korkmaz ME, Günay M. Experimental and statistical analysis on machinability of nimonic80A superalloy with PVD coated carbide. Sigma J Eng Nat Sci. 2018;36:1141-52.
  • 42. Korkmaz ME. Verification of Johnson-Cook parameters of ferritic stainless steel by drilling process: experimental and finite element simulations. J Mater Res Technol. 2020;9:6322-30. https://doi.org/10.1016/j.jmrt.2020.03.045.
  • 43. Günay M, Korkmaz ME, Yaşar N. Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments. J Manuf Process. 2020;56:678-687. https://doi.org/10.1016/j.jmapro.2020.05.031.
  • 44. Inagaki I, Takechi T, Shirai Y, Ariyasu N. Application and features of titanium for the aerospace industry, nippon steel sumitomo. Met Tech Rep. 2014;106:22-27.
  • 45. Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2:20-32.
  • 46. Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16:57-67.
  • 47. RTI International Metals - Wikipedia, (n.d.).
  • 48. Titanium Facts & Characteristics: Manufacturers Guide. Ulbrich, (n.d.).
  • 49. Pradhan S, Singh S, Prakash C, Królczyk G, Pramanik A, Pruncu CI. Investigation of machining characteristics of hard-to-machine Ti-6Al-4V-ELI alloy for biomedical applications. J Mater Res Technol. 2019;8:4849-62.
  • 50. Mouritz AP. Titanium alloys for aerospace structures and engines. Introduction to aerospace materials. Sawston: Wood head Publishing; 2012. p. 202-23.
  • 51. Zhou Z, Fei Y, Lai M, Kou H, Chang H, Shang G, Zhu Z, Li J, Zhou L. Microstructure and mechanical properties of new metastable β type titanium alloy. Trans Nonferrous Met Soc China. 2010;20:2253-8.
  • 52. Singh SK, Muneshwar P, Kumar KN, Pant B, Sreekumar K, Sinha PP. Development and characterization of Ti5Al2.5Sn-ELI alloy hemispherical domes for high-pressure cold helium tanks. Mater Sci Forum. 2012;710:113-118.
  • 53. Williams JC, Boyer RR. Opportunities and issues in the application of titanium alloys for aerospace components. Metals. 2020. https://doi.org/10.3390/met10060705.
  • 54. Pitchi CS, Priyadarshini A, Sana G, Narala SKR. A review on alloy composition and synthesis of β-titanium alloys for biomedical applications. Mater Today Proc. 2020;26:3297-304. https:// doi.org/10.1016/j.matpr.2020.02.468.
  • 55. Antunes RA, Salvador CAF, de Oliveira MCL. Materials selection of optimized titanium alloys for aircraft applications. Mater Res. 2018. https://doi.org/10.1590/1980-5373-mr-2017-0979.
  • 56. Fan H, Liu Y, Yang S. Martensite decomposition during post-heat treatments and the aging response of near-α Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM). J Micromech Mol Phys. 2021.
  • 57. Cotton JD, Briggs RD, Boyer RR, Tamirisakandala S, Russo P, Shchetnikov N, Fanning JC. State of the art in beta titanium alloys for airframe applications. JOM. 2015;67:1281-303. 58. Ouyang P, Dong H, He X, Cai X, Wang Y, Li J, Li H, Jin Z. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth. Mater Des. 2019;183: 108151.
  • 59. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Prog Mater Sci. 2009;54:397-425. https://doi.org/10.1016/j. pmatsci.2008.06.004.
  • 60. Demirsöz R, Korkmaz ME, Gupta MK, Collado AG, Krolczyk GM. Erosion characteristics on surface texture of additively manufactured AlSi10Mg alloy in SiO quartz added slurry environment. Rapid Prototyp J. 2021.
  • 61. Demirsöz R, Polat R, Türk A, Erdoğan G. Investigation of erosive wear behavior of granulated blast furnace slag on hard coated and uncoated steels. J Fac Eng Archit Gazi Univ. 2019;34:103-113.
  • 62. Titanium Alloys - Wear Resistance, (n.d.).
  • 63. Wood RJ, Ramkumar P, Wang L, Wang TJ, Nelson K, Yamaguchi ES, Harrison JJ, Powrie HE, Otin N. Electrostatic monitoring of the effects of carbon black on lubricated steel/steel sliding contacts. In: Dowson D, Priest M, Dalmaz G, Lubrecht AA, editors. Life cycle tribol. New York: Elsevier; 2005. p. 109-121.
  • 64. Molinari A, Strafelini G, Tesi B, Bacci T. Dry sliding wear mechanisms of the Ti6A14V alloy. Wear. 1997;208:105-112. https://doi.org/10.1016/S0043-1648(96)07454-6.
  • 65. Hager CH, Sanders JH, Sharma S. Effect of high temperature on the characterization of fretting wear regimes at Ti6Al4V interfaces. Wear. 2006;260:493-508.
  • 66. Strafelini G, Molinari A. Dry sliding wear of Ti-6Al-4V alloy as influenced by the counter face and sliding conditions. Wear. 1999;236:328-338.
  • 67. Alam MO, Haseeb ASMA. Response of Ti-6Al-4V and Ti-24Al-11NB alloys to dry sliding wear against hardened steel. Tribol Int. 2002;35:357-362.
  • 68. Qiu M, Zhang Y, Zhu J, Yang J. Dry friction characteristics of Ti-6Al-4V alloy under high sliding velocity. J Wuhan Univ Technol Mater Sci Ed. 2007;22:582-585.
  • 69. Cui XH, Mao YS, Wei MX, Wang SQ. Wear characteristics of T-6Al-4V Alloy at 20-400°C. Tribol Trans. 2012;55:185-190. https://doi.org/10.1080/10402004.2011.647387.
  • 70. Fellah M, Labaïz M, Assala O, Dekhil L, Taleb A, Rezag H, Iost A. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb alloys for total hip prosthesis. Adv Tribol. 2014. https://doi. org/10.1155/2014/451387.
  • 71. Ashok Raj J, Pottirayil A, Kailas SV. Dry sliding wear behavior of Ti-6Al-4V pin against ss316l disk at constant contact pressure. J Tribol. 2017. https://doi.org/10.1115/1.4033363.
  • 72. Liu Y, Yang D, He S, Ye Z. Dry sliding wear of Ti-6Al-4V alloy at low temperature in vacuum Bt-protection of materials and structures from the space environment. Dordrecht: Springer; 2006. p. 309-16.
  • 73. Conradi M, Kocijan A, Klobčar D, Podgornik B. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank’s solution. Tribol Int. 2021. https:// doi.org/10.1016/j.triboint.2021.107049.
  • 74. Mao YS, Wang L, Chen KM, Wang SQ, Cui XH. Tribo-layer and its role in dry sliding wear of Ti-6Al-4V alloy. Wear. 2013;297:1032-9. https://doi.org/10.1016/j.wear.2012.11.063.
  • 75. Jozwik J. Evaluation of tribological properties and condition of TI6AL4V titanium alloy surface. Teh Vjesn. 2018;25:170-175. https://doi.org/10.17559/TV-20160521145125.
  • 76. Wang L, Zhang QY, Li XX, Cui XH, Wang SQ. Severe-to mild wear transition of titanium alloys as a function of temperature. Tribol Lett. 2014;53:511-520. https://doi.org/10.1007/ s11249-013-0289-5.
  • 77. Feng C, Khan TI. The efect of quenching medium on the wear behaviour of a Ti-6Al-4V alloy. J Mater Sci. 2008;43:788-92. https://doi.org/10.1007/s10853-007-2298-y.
  • 78. Yang Y, Zhang C, Dai Y, Luo J. Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions. Tribol Int. 2017;109:40-47.
  • 79. Luo Y, Yang L, Tian M. Influence of bio-lubricants on the tribological properties of Ti6Al4V alloy. J Bionic Eng. 2013;10:84-9. https://doi.org/10.1016/S1672-6529(13) 60202-4.
  • 80. Cvijović-Alagić I, Cvijović Z, Mitrović S, Rakin M, Veljović D, Babić M. Tribological behaviour of orthopaedic Ti–13Nb–13Zr and Ti–6Al–4V alloys. Tribol Lett. 2010;40:59-70. https://doi. org/10.1007/s11249-010-9639-8.
  • 81. Chetan BC, Behera S, Ghosh PV. Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions. Ceram Int. 2016;42:14873-85. https://doi.org/10.1016/j.ceramint.2016.06.124.
  • 82. Liang X, Liu Z, Wang B. Physic-chemical analysis for high temperature tribology of WC-6Co against Ti-6Al-4V by pin on-disc method. Tribol Int. 2020;146: 106242. https://doi.org/ 10.1016/j.triboint.2020.106242.
  • 83. Yang Y, Zhang C, Wang Y, Dai Y, Luo J. Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester. Tribol Int. 2016;95:27-34. https://doi.org/ 10.1016/j.triboint.2015.10.031.
  • 84. Egaña A, Rech J, Arrazola PJ. Characterization of friction and heat partition coeficients during machining of a TiAl6V4 titanium alloy and a cemented carbide. Tribol Trans. 2012;55:665-76.
  • 85. Courbon C, Pusavec F, Dumont F, Rech J, Kopac J. Tribology International Tribological behaviour of Ti6Al4V and Inconel718 under dry and cryogenic conditions - application to the context of machining with carbide tools. Tribiology Int. 2013;66:72-82. https://doi.org/10.1016/j.triboint.2013.04.010.
  • 86. Krajewska-Spiewak J, Gawlik J. Effect of residual stresses in surface layer of nickel-based alloy-inconel 718 on the safety factor of construction BT - advances in manufacturing. In: Hamrol A, Ciszak O, Legutko S, Jurczyk M, editors. Advances in manufacturing. Cham: Springer International Publishing; 2018. p.933-40.
  • 87. Patil A. Tribological behavior of WC-CO carbide filled with solid lubricant in dry sliding. Int Res J Eng Technol. 2020;7:3975-80.
  • 88. Jadhav PM, Kumar Reddy NS. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles. IOP Conf Ser Mater Sci Eng. 2018;346:12007. https://doi.org/10.1088/ 1757-899x/346/1/012007.
  • 89. Niu QL, Zheng XH, Ming WW, Chen M. Friction and wear performance of titanium alloys against tungsten carbide under dry sliding and water lubrication. Tribol Trans. 2013;56:101-108. https://doi.org/10.1080/10402004.2012.729296.
  • 90. Qu J, Blau PJ, Watkins TR, Cavin OB, Kulkarni NS. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear. 2005;258:1348-56.
  • 91. Xuedong W, Dapu W, Shengrong Y, Qunji X. Tribochemical investigation of tungsten carbide/titanium alloy tribo-couples under aqueous lubrication. Wear. 2000;237:28-32.
  • 92. Cadena NL, Cue-Sampedro R, Siller HR, Arizmendi-Morquecho AM, Rivera-Solorio CI, Di-Nardo S. Study of PVD AlCrN coating for reducing carbide cutting tool deterioration in the machining of titanium alloys. Materials (Basel). 2013;6:2143-54.
  • 93. Mo JL, Zhu MH, Lei B, Leng YX, Huang N. Comparison of tribological behaviours of AlCrN and TiAlN coatings - deposited by physical vapor deposition. Wear. 2007;263:1423-9.
  • 94. Medina N, Miguel V, Martínez A, Coello J, Manjabacas MC. Methodology to evaluate the tribology of pairs coated CW based tools and Ti6Al4V alloy. Procedia Manuf. 2017;13:631-8. https://doi.org/10.1016/j.promfg.2017.09.132.
  • 95. El-Tayeb NSM, Yap TC, Venkatesh VC, Brevern PV. Modeling of cryogenic frictional behaviour of titanium alloys using response surface methodology approach. Mater Des. 2009;30:4023-34. https://doi.org/10.1016/j.matdes.2009.05.020.
  • 96. Liu Y, Yang D, He S, Ye Z. Dry sliding wear of Ti-6Al-4V alloy at low temperature in vacuum. In: protection of materials and structures from the space environment. Dordrecht: Springer; 2006. p.309-16.
  • 97. Thamizhmanii S, Mohideen R, Zaidi AMA. Wear behavior of carbide tool coated with Yttria- stabilized zirconia nano particles. IOP Conf Ser. 2018. https://doi.org/10.1088/1757-899X/346/1/ 012007.
  • 98. Qu J, Blau PJ, Watkins TR, Cavin OB, Kulkarni NS. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear. 2008;258:1348-56. https://doi.org/ 10.1016/j.wear.2004.09.062
  • 99. Çalişkan H, Küçükköse M. The effect of aCN/TiAlN coating on tool wear, cutting force, surface fnish and chip morphology in face milling of Ti6Al4V superalloy. Int J Refract Met Hard Mater. 2015;50:304-312. https://doi.org/10.1016/j.ijrmhm.2015.02.012.
  • 100. Luo Y, Chai W, Yang L, Tian M, Xu H, Chen W. The surface characterization of microporous titanium carbide coating on titanium alloys. Proc Inst Mech Eng Part J J Eng Tribol. 2014;228:521-8.
  • 101. Quan X, Xie H, Xu X, Tang J. Study on the enhanced tribological performance for titanium alloys by PEG oil/Zn-nanoparticles. Mater Res Express. 2020. https://doi.org/10.1088/2053-1591/abcd59.
  • 102. Allen C, Bloyce A, Bell T. Sliding wear behaviour of ion implanted ultra high molecular weight polyethylene against a surface modified titanium alloy Ti-6Al-4V. Tribol Int. 1996;29:527-34. https://doi.org/10.1016/0301-679X(95) 00116-L.
  • 103. Yilbas BS, Sahin AZ, Al-Garni AZ, Said SAM, Ahmed Z, Abdulaleem BJ, Sami M. Plasma nitriding of Ti-6Al-4V alloy to improve some tribological properties. Surf Coatings Technol. 1996;80:287-292.
  • 104. Oñate JI, Alonso F, García A. Improvement of tribological properties by ion implantation. Thin Solid Films. 1998;317:471-476. https://doi.org/10.1016/S0040-6090(97)00564-6.
  • 105. Itoh Y, Itoh A, Azuma H, Hioki T. Improving the tribological properties of Ti-6Al-4V alloy by nitrogen-ion implantation. Surf Coatings Technol. 1999;111:172-6. https://doi.org/10.1016/ S0257-8972(98)00728-2.
  • 106. Vakili-Azghandi M, Roknian M, Szpunar JA, Mousavizade SM. Surface modification of pure titanium via friction stir processing: microstructure evolution and dry sliding wear performance. J Alloys Compd. 2020;816: 152557.
  • 107. Guleryuz H, Cimenoglu H. Surface modification of a Ti-6Al- 4V alloy by thermal oxidation. Surf Coatings Technol. 2005;192:164-170.
  • 108. Pratap T, Patra K. Mechanical micro-texturing of Ti-6Al-4V surfaces for improved wettability and bio-tribological performances. Surf Coatings Technol. 2018;349:71-81. https://doi.org/10.1016/j.surfcoat.2018.05.056.
  • 109. Prakash C, Singh S, Pruncu CI, Mishra V, Królczyk G, Pimenov DY, Pramanik A. Surface modification of Ti-6Al-4V alloy by electrical discharge coating process using partially sintered Ti-Nb electrode. Materials. 2019.
  • 110. Ghosh S, Choudhury D, Roy T, Bin Mamat A, Masjuki HH, Pingguan-Murphy B. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fuid. Sci Technol Adv Mater. 2015;16:1-11.
  • 111. Kang J, Wang M, Yue W, Fu Z, Zhu L, She D, Wang C. Tribological behavior of titanium alloy treated by nitriding and surface texturing composite technology. Materials (Basel). 2019. https:// doi.org/10.3390/ma12020301.
  • 112. Singh R, Dureja JS, Dogra M, Gupta MK, Mia M, Song Q. Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribol Int. 2020;145:106183.
  • 113. Hsu CS, Li Q. Surface modifcation of Ti64 through hydrothermal treatment in urea solutions. Mater Lett. 2018;216:299-302. https://doi.org/10.1016/j.matlet.2018.01.114.
  • 114. Datta S, Das M, Balla VK, Bodhak S, Murugesan VK. Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surf Coatings Technol. 2018;344:214-222. https://doi.org/10.1016/j.surfcoat.2018.03.019.
  • 115. Danişman D, Odabas M. The effect of coatings on the wear behavior of Ti6Al4V alloy used in biomedical applications. IOP Conf Ser Mater Sci Eng. 2018;295:12. https://doi.org/10.1088/ 1757-899X/295/1/012044.
  • 116. Shao M, Wang W, Yang H, Zhang X, He X. Preparation of wear resistant coating on Ti6Al4V alloy by cold spraying and plasma electrolytic oxidation. Coatings. 2021.
  • 117. Roy MR, Ramanaiah N, Rao BSK. Efect of Hank’s solution on sliding wear behaviour of Cr3 C2 -NiCr coated Ti6Al4V alloy. Int J Mech Eng. 2017;1:304-309.
  • 118. Revankar GD, Shetty R, Rao SS, Gaitonde VN. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process. J Mater Res Technol. 2017;6:13-32. https://doi.org/10.1016/j.jmrt.2016.03.007.
  • 119. Shao M, Wang W, Yang H, Zhang X, He X. Preparation of Wear-Resistant Coating on Ti6Al4V Alloy by Cold Spraying and Plasma Electrolytic Oxidation. Coatings. 2021;11(11):1288.
Uwagi
1) Bibliogr.: poz. 23 powtórzona pod poz. 27.
2) Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aa5706bd-e5cc-45aa-a48d-d8d7abb61843
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.