Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents theoretical possibilities for producing planar gradient microlenses in soda-lime glass using the Ag⁺↔Na⁺ ion exchange method. The modelling of ion exchange processes (pre-diffusion, heating) was used to calculate two-dimensional refractive profiles. A mathematical model of ion exchange was used, considering the dependence of the diffusion coefficients of exchanged ions on their normalised concentrations. Simulations of changes in refraction in glass are based on experimental results. An algorithm based on Snell’s law is used to calculate ray trajectories, determining the refractive properties of microlenses. The proposed algorithm allows determining ray trajectories with arbitrarily small steps in the gradient region of the glass. The refractive properties of the modelled gradient microlenses were analysed for meridional beams. The numerical modelling shows the influence of controlled grinding of the glass surface on the focusing properties of the microlenses. This allows for very good correction of the spherical aberration in manufactured microlenses.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155904
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., tab.
Twórcy
autor
- Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, ul. Bolesława Krzywoustego 2, 44-100 Gliwice, Poland
Bibliografia
- [1] Ottevaere, H. et al. Comparing glass and plastic refractive micro-lenses fabricated with different technologies. J. Opt. A: Pure Appl. Opt. 8, 407-429 (2006). https://doi.org/10.1088/1464-4258/8/7/S18.
- [2] Li, Y. et al. Research on micro-optical lenses fabrication technology. Optik 118, 395-401 (2007). https://doi.org/10.1016/j.ijleo.2006.04.013.
- [3] Oikawa, M. Iga, K., Sanada, T., Yamamoto, N. & Nishizawa, K. Array of distributed-index planar micro-lenses prepared from ion exchange technique. Jpn. J. Appl. Phys. 20, 296-298 (1981). https://doi.org/10.1143/JJAP.20.L296.
- [4] Borelli, N. F., Morse, D. L., Bellman, R. H. & Morgan, W. L. Photolytic technique for producing microlenses in photosensitive glass. Appl. Opt. 24, 2520-2525 (1985). https://doi.org/10.1364/AO.24.002520.
- [5] Weigel, Ch. et al. Perspectives of reactive ion etching of silicate glasses for optical microsystems. J. Opt. Microsyst. 1, 040901 (2021). https://doi.org/10.1117/1.JOM.1.4.040901.
- [6] Nieto, D., Flores-Arias, M. T., O’Connor, G. M. & Gomez-Reino, C. Laser direct-write technique for fabricating microlens arrays on soda-lime glass with a Nd:YVO4 laser. Appl. Opt. 49, 4979-4983 (2010). https://doi.org/10.1364/AO.49.004979.
- [7] Popovic, Z. D., Sprague, R. A. & Connell, G. A. Technique for monolithic fabrication of microlens arrays. Appl. Opt. 27, 1281-1284 (1988). https://doi.org/10.1364/AO.27.001281.
- [8] Grigaliūnas, V. et al. Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique. Microelectron. Eng. 164, 23-29 (2016). https://doi.org/10.1016/j.mee.2016.07.003.
- [9] Yuan, W., Li, L.-H., Li, W.-B. & Chan, C.-Y. Fabrication of microlens array and its application: A review. Chin. J. Mech. Eng. 31, 16 (2018). https://doi.org/10.1186/s10033-018-0204-y.
- [10] Pan, C. T. et al. Hot embossing of micro-lens array on bulk metallic glass. Sens. Actuators A: Phys. 141, 422-431 (2008). https://doi.org/10.1016/j.sna.2007.10.040.
- [11] Kasztelaniec, R. et al. Fabrication and characterization of micro-lenses made of tellurite and heavy metal oxide glass developed with hot embossing technology. Opt. Quantum Electron. 46, 541-552 (2014). https://doi.org/10.1007/s11082-013-9811-0.
- [12] Bogucki, A. et al. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. Light Sci. Appl. 9, 48 (2020). https://doi.org/10.1038/s41377-020-0284-1.
- [13] Rogoziński, R. Predictive control of ion exchange processes in glasses. Prz. Elektrotech. 99, 269-273 (2023). https://doi.org/10.15199/48.2023.10.56 [in Polish].
- [14] Rogoziński, R. Producibility of the ion-exchange method in manufacturing gradient refractive index in glass. Bull. Pol. Acad. Sci. Tech. Sci. 62, 655-665 (2014). https://doi.org/10.2478/bpasts-2014-0072.
- [15] Rogoziński, R. Ion Exchange in Glass - The Changes of Glass Refraction. in Ion Exchange Technologies (Ed. Kilislioğlu, A.) 155-190 (InTech, 2012). https://doi.org/10.5772/51427.
- [16] Pluta, M. Mikrointerferometria w Świetle Spolaryzowanym. (Wydawnictwa Naukowo Techniczne, 1990). [in Polish].
- [17] Zięba, M. et al. High refractive index silica-titania films fabricated via the sol–gel method and dip-coating technique-physical and chemical characterization. Materials 14, 7125 (2021). https://doi.org/10.3390/ma14237125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9a988b3-9bd3-4ce7-9a9f-194384a7b0bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.