PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of electrical resistivity tomography for imaging seawater intrusion in a coastal aquifer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Following previous geoelectrical researches initiated in 2009 for the delineation and characterization of seawater intrusion in a freshwater aquifer of Sarmatian (late Middle Miocene) age, a subsurface imaging survey via 2-D electrical resistivity tomography (ERT) was conducted in 2019 on the outskirts of Vama Veche resort—Romanian Black Sea southern coast. The survey was organized in the framework of a feld camp sponsored by the Foundation of the Society of Exploration Geophysicists (SEG)–Tulsa, OK, USA, with participation of teams from the University of Bucharest—Department of Geophysics and the Geological Institute of Romania. A number of eight ERT profles with N–S, W–E, NNE–SSW, and WNW–ESE orientation and 155–315 m length were imaged with a SuperSting R8/IP instrument (Advanced Geosciences Inc.), using deployments of 32–64 electrodes at 5 m spacing, in Wenner, Schlumberger, and dipole–dipole array confgurations. The processing and interpretation of high-resolution ERT data indicated that the seawater intrusion, evidenced as very low resistivity (5–10 Ω m) anomalous zones starting at approximately 45–49 m depth, has advanced at least 500 m inland. The survey results also allowed the identifcation of a system of fractures or faults with an approximate NW–SE/WNW–ESE and, possibly, N–S orientation, that might have provided potential pathways for saline water intrusion.
Czasopismo
Rocznik
Strony
613--630
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Faculty of Geology and Geophysics, Department of Geophysics, University of Bucharest, 6 Traian Vuia Street, 020956 Bucharest, Romania
autor
  • Faculty of Geology and Geophysics, Department of Geophysics, University of Bucharest, 6 Traian Vuia Street, 020956 Bucharest, Romania
Bibliografia
  • 1. Alabjah B, Amraoui F, Chibout M, Slimani M (2018) Assessment of saltwater contamination extent in the coastal aquifers of Chaouia (Morocco) using the electric recognition. J Hydrol 566:363–376
  • 2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. AIME Trans 146:54–62
  • 3. Arslan H, Cemek B, Demir Y (2012) Determination of seawater intrusion via hydrochemicals and isotopes in Bafra plain Turkey. Water Resour Manag 26(13):3907–3922
  • 4. Cimino A, Cosentino C, Oieni A, Tranchina L (2008) A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environ Geol 55:1473–1482
  • 5. Conea A (1970) Quaternary deposits in Dobrogea. Publishing House of the Romanian Academy, Bucharest, Romania (in Romanian, with summary in English)
  • 6. Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27:1019–1029
  • 7. de Franco R, Biella G, Tosi L, Teatini P, Lozej A, Chiozzotto B, Giada M, Rizzetto F, Claude C, Mayer A, Bassan V, Gasparetto-Stori G (2009) Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: the Chioggia test site (Venice Lagoon, Italy). J Appl Geophys 69(3–4):117–130
  • 8. Dey A, Morrison HF (1979) Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophys Prospec 27(1):106–136
  • 9. Dinu C, Wong HK, Ţambrea D, Maţenco L (2005) Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410:417–435
  • 10. Doveton JH (1986) Log analysis of subsurface geology: concepts and computer methods. John Wiley and Sons Inc, New York, USA
  • 11. Edwards LS (1977) A modified pseudosection for resistivity and IP. Geophysics 42(5):1020–1036
  • 12. Ellis RG, Oldenburg DW (1994) Applied geophysical inversion. Geophys J Int 116(1):5–11
  • 13. Fitterman DV, Deszcz-Pan M (2004) Characterization of saltwater intrusion in south Florida using electromagnetic geophysical methods. In: Araguás L, Custodio E, Manzano M (eds) Proceedings of the 18th Salt Water Intrusion Meeting. Cartagena, Spain
  • 14. Galazoulas EC, Mertzanides YC, Petalas CP, Kargiotis EK (2015) Large scale electrical resistivity tomography survey correlated to hydrogeological data for mapping groundwater salinization: a case study from a Multilayered coastal aquifer in Rhodope, Northeastern Greece. Environ Process 2:19–35
  • 15. Georgescu P, Ioane D, Niculescu BM, Chitea F (2010) Geoelectrical investigations of marine intrusions on the Romanian Black Sea shore. Geo-Eco-Marina 16:85–92
  • 16. Ghosh DP (1971) The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophy Prospec 19(2):192–217
  • 17. Giménez-Forcada E (2019) Use of the Hydrochemical facies diagram (HFE-D) for the evaluation ofsalinization by seawater intrusion in the coastal Oropesa Plain: comparative analysis with the coastal Vinaroz Plain, Spain. HydroResearch 2:76–84
  • 18. Goebel M, Knight R, Halkjær M (2019) Mapping saltwater intrusion with an airborne electromagnetic method in the offshore coastal environment, Monterey Bay California. J Hydrol: Reg Stud 23:100602
  • 19. Goldman M, Gilad D, Ronen A, Melloul A (1991) Mapping of seawater intrusion into the coastal aquifer of Israel by the time domain electromagnetic method. Geoexploration 28(2):153–174
  • 20. Goldman M, Kafri U (2006) Hydrogeophysical applications in coastal aquifers. In: Vereecken H, Binley A, Cassiani G, Revil A, Titov K (eds) Applied Hydrogeophysics. NATO Science Series, Springer, Dordrecht, The Netherlands
  • 21. Juravle DT (2009) Geology of Romania, vol. I: Geology of the East-Carpathian Terranes (Platforms and the North Dobrogea Orogen). Stef Publishing House, Iaşi, Romania (in Romanian)
  • 22. Kazakis N, Pavlou A, Vargemezis G, Voudouris KS, Soulios G, Pliakas F, Tsokas G (2016) Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf. Science of the Total Environment, Greece. https://doi.org/10.1016/j.scitotenv.2015.11.041
  • 23. Keller EA (2012) Introduction to environmental geology, 5th edn. Pearson Prentice Hall, Upper Saddle River, NJ, USA
  • 24. Kirkegaard C, Sonnenborg TO, Auken E, Jørgensen FV (2011) Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetics. Vadose Zone J 10(1):125–135
  • 25. Kirsch R (2009) Groundwater quality – saltwater intrusions. In: Kirsch R (ed) Groundwater geophysics: a tool for hydrogeology, 2nd edn. Springer-Verlag, Berlin Heidelberg, Germany, pp 475–490
  • 26. Koefoed O (1979) Geosounding principles, 1: resistivity sounding measurements. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands
  • 27. Liteanu E, Ghenea C (1966) Quaternary from Romania. Technical and economic studies, Series H, Nr. 1, Geological Committee, Bucharest, Romania (in Romanian)
  • 28. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospec 44(1):131–152
  • 29. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187
  • 30. Loke MH (2010) RES2DINV version 3.59—Rapid 2-D Resistivity & IP inversion using the least-squares method. Geotomo Software, Penang, Malaysia, 148 pp, http://www.geotomosoft.com/
  • 31. Loke MH (2020) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Software, Penang, Malaysia, 205 pp, http://www.geotomosoft.com/
  • 32. Moroşanu I (2012) The hydrocarbon potential of the Romanian Black Sea continental plateau. Romanian J Earth Sci 86(2):91–109
  • 33. Nenna V, Herckenrath D, Knight R, Odlum N, McPhee D (2013) Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California. Geophys 78(2):B77–B88
  • 34. Niculescu BM, Andrei G (2019) Using vertical electrical soundings to characterize seawater intrusions in the southern area of Romanian Black Sea Coastline. Acta Geophys 67(6):1845–1863
  • 35. Nowroozi AA, Horrocks SB, Henderson P (1999) Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey. J Appl Geophys 42(1):1–22
  • 36. Săndulescu M (1984) Geotectonics of Romania. Technical Publishing House, Bucharest (in Romanian)
  • 37. Schlumberger, (2013) Log interpretation charts, 2013th edn. Schlumberger, Houston, TX, USA
  • 38. Stewart MT (1982) Evaluation of electromagnetic methods for rapid mapping of salt-water interfaces in coastal aquifers. Groundwater 20(5):538–545
  • 39. Stewart MT (1999) Geophysical investigations. In: Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (eds) Seawater intrusion in coastal aquifers—Concepts, methods and practices. Springer, Dordrecht, The Netherlands
  • 40. Teatini P, Tosi L, Viezzoli A, Baradello L, Zecchin M, Silvestri S (2011) Understanding the hydrogeology of the Venice Lagoon subsurface with airborne electromagnetic. J Hydrol 411(3–4):342–354
  • 41. Telahigue F, Mejri H, Mansouri B, Souid F, Agoubi B, Chahlaoui A, Kharroubi A (2020) Assessing seawater intrusion in arid and semi-arid Mediterranean coastal aquifers using geochemical approaches. Phys Chem Earth 115:102811
  • 42. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge, UK
  • 43. Tosi L, Baradello L, Teatini P, Zecchin M, Bonardi M, Shi P, Tang C, Li F, Brancolini G, Chen Q, Chiozzotto B, Frankenfield J, Giada M, Liu D, Nieto D, Rizzetto F, Sheng Y, Xiao Y, Zhou D (2011) Combined continuous electrical tomography and very high resolution seismic surveys to assess continental and marine groundwater mixing. Bollettino di Geofisica Teorica ed Applicata 52(4):585–594
  • 44. Ţenu A, Davidescu F, Echinger L, Voerkelius S (1997) Quality evaluation of groundwaters in southern Dobrogea. Theor Appl Karstol 10:63–77
  • 45. Visarion M., Săndulescu M, Stănică D, Veliciu Ş (1988) Contributions à la connaissance de la structure profonde de la plateforme Moesienne en Roumanie. Studii Tehnice şi Economice (Seria D–Geofizică) 15:211–222 (in French)
  • 46. Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv Water Resour 51:3–26
  • 47. Wolke R, Schwetlick H (1988) Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons. SIAM J Sci Stat Comput 9(5):907–921
  • 48. Yang C-H, Tong L-T, Huang C-F (1999) Combined application of dc and TEM to sea-water intrusion mapping. Geophysics 64(2):417–425
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a981f1d0-a7f2-4595-a81f-7f68a5f1e4ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.