PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Zinc on the Growth and the Antioxidant System of Lens Culinaris Cultivated on Agar Medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to analyze the impact of Zn on the growth and the antioxidant response of Lens culinaris. For this purpose, the seeds were germinated for 6 days in an MS/2 culture medium with different Zn concentrations. Malondialdehyde (MDA), total protein contents, and antioxidant enzymes activities were measured in both parts of the plant by spectrometry. The results showed that from the Zn concentration of 250 µM, the growth of lentils is inversely proportional to the concentration of Zn in the culture medium. The variations in the level of MDA are not very significant, but at 10 000 μM of Zn in the medium, the level becomes very important, whilst the total protein content decreased. Besides, the evaluation of enzymatic activities indicated that the decline of peroxidase (POD) is concomitant with the increase in glutathione peroxidase (GPx) and that glutathione S-transferase (GST), as well as catalase (CAT) reach their maximum activities at 10 000 µM and 3000 µM of Zn in upper parts and roots, respectively. These findings revealed that MDA is a real indicator of oxidative stress in Lens culinaris and that this plant is tolerant to the presence of Zn in the culture medium by developing a powerful antioxidant system, but beyond a certain concentration its antioxidant system becomes ineffective and the plant enters a stress state.
Słowa kluczowe
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Laboratory of Mycology, Biotechnology and Microbial Activity, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
  • Biology and Environment Laboratory, Faculty of Nature and Life Sciences, University of frères Mentouri, Constantine 1, Road Ain El Bey, Constantine 25017, Algeria
Bibliografia
  • 1. AbdElgawad H., Zinta G., Hamed B.A., Selim S., Beemster G., Hozzein W.N., Wadaan M.A., Asard H., Abuelsoud W. 2020. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution, 258, 113705.
  • 2. Ahanger M.A., Agarwal R.M., Tomar N.S., Shrivastava M. 2015. Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L cultivar Kent). Journal of plant interactions, 10(1), 211–223.
  • 3. Ahmadi S., Ghafouri H., Tarazi S., Sarikhan S., Kh O.S. 2021. Cloning purification and biochemical characterization of two glutathione S-transferase isoforms from Rutilus frisii kutum. Protein Expression and Purification, 179, 105800.
  • 4. Akram N.A., Shafiq F., Ashraf M. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in plant science, 8, 613.
  • 5. Benhamdi A., Bentellis A., Rached O., Du Laing G., Mechakra A. 2014. Effects of Antimony and Arsenic on Antioxidant Enzyme Activities of Two Steppic Plant Species in an Old Antimony Mining Area. Biological trace element research, 158, 96–104.
  • 6. Bernard F., Brulle F., Dumez S., Lemiere S., Platel A., Nesslany F., Cuny D., Deram A., Vandenbulcke F. 2015. Antioxidant responses of Annelids Brassicaceae and Fabaceae to pollutants: a review. Ecotoxicology and environmental safety, 114, 273–303.
  • 7. Berni R., Luyckx M., Xu X., Legay S., Sergeant K., Hausman J.F., Lutts S., Cai G., Guerriero G. 2019. Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98–106.
  • 8. Bhaduri A.M., Fulekar M.H., 2012. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio/Technology, 11, 55–69.
  • 9. Chance B., Machly A. 1967. Methods of biochemical analysis in: Interscience Publishers Inc. Glick D New York.
  • 10. Chance B., Maehly A.C. 1955. [136] Assay of catalases and peroxidases. Methods in enzymology, 2, 764–775.
  • 11. Cherrad S., Girard V., Dieryckx C., Gonçalves I.R., Dupuy J.-W., Bonneu M., Rascle C., Job C., Job D., Vacher S. 2012. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics, 4(8), 835–846.
  • 12. DalCorso G., Manara A., Furini A. 2013. An overview of heavy metal challenge in plants: from roots to shoots. Metallomics, 5(9), 1117–1132.
  • 13. Demidchik V. 2015. Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and experimental botany, 109, 212–228.
  • 14. Esposito M.P., Nakazato R.K., Pedroso A.N.V., Lima M.E.L., Figueiredo M.A., Diniz A.P., Kozovits A.R., Domingos M. 2018. Oxidant-antioxidant balance and tolerance against oxidative stress in pioneer and non-pioneer tree species from the remaining Atlantic Forest. Science of the Total Environment, 625, 382–393.
  • 15. Flohé L., Günzler W.A. 1984. Assays of glutathione peroxidase. Methods in enzymology, 105, 114–120.
  • 16. Goodarzi A., Namdjoyan S., Soorki A.A. 2020. Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology and environmental safety, 201, 110853.
  • 17. Guan Y., Shao C., Ju M. 2014. Heavy metal contamination assessment and partition for industrial and mining gathering areas. International journal of environmental research and public health, 11(7), 7286–7303.
  • 18. Habig W.H., Jakoby W.B. 1981. Assays for differentiation of glutathione S-transferases. Methods in enzymology, 77, 398.
  • 19. Hajiboland R. 2012. Effect of micronutrient deficiencies on plants stress responses in: Abiotic Stress Responses in Plants. Springer, 283–329.
  • 20. Halliwell B., Gutteridge J.M. 2015. Free radicals in biology and medicine. Oxford University Press USA.
  • 21. Hartikainen H., Xue T., Piironen V. 2000. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and soil, 225, 193–200.
  • 22. Helaoui S., Boughattas I., Hattab S., Mkhinini M., Alphonse V., Livet A., Bousserrhine N., Banni M. 2020. Physiological biochemical and transcriptomic responses of Medicago sativa to nickel exposure. Chemosphere, 249, 126121.
  • 23. Hou X., Tan L., Tang S.F. 2019. Molecular mechanism study on the interactions of cadmium (II) ions with Arabidopsis thaliana glutathione transferase Phi8. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 216, 411–417.
  • 24. Ishimaru Y., Bashir K., Nishizawa N.K. 2011. Zn uptake and translocation in rice plants. Rice, 4, 21–27.
  • 25. Jośko I., Kusiak M., Oleszczuk P., Świeca M., Kończak M., Sikora M. 2021. Transcriptional and biochemical response of barley to co-exposure of metal-based nanoparticles. Science of The Total Environment, 782, 146883.
  • 26. Kosugi H., Kikugawa K. 1985. Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid. Lipids, 20, 915–921.
  • 27. Kulbat-Warycha K., Georgiadou E.C., Mańkowska D., Smolińska B., Fotopoulos V., Leszczyńska J. 2020. Response to stress and allergen production caused by metal ions (Ni Cu and Zn) in oregano (Origanum vulgare L.) plants. Journal of Biotechnology, 324, 171–182.
  • 28. Lamhamdi M., Bakrim A., Aarab A., Lafont R., Sayah F. 2011. Lead phytotoxicity on wheat (< i> Triticum aestivum L.) seed germination and seedlings growth. Comptes rendus biologies, 334(2), 118–126.
  • 29. Lin H., Sun T., Zhou Y., Zhang X. 2016. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper lead and cadmium. Marine pollution bulletin, 109(1), 325–333.
  • 30. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265–275.
  • 31. Malik B., Pirzadah T.B., Tahir I., Hakeem K.R., Rather I.A., Sabir J.S., Rehman R.U. 2021. Lead and aluminium-induced oxidative stress and alteration in the activities of antioxidant enzymes in chicory plants. Scientia Horticulturae, 278, 109847.
  • 32. Malod K., Roets P.D., Oosthuizen C., Blount J.D., Archer C.R., Weldon C.W. 2020. Selection on age of female reproduction in the marula fruit fly Ceratitis cosyra (Walker)(Diptera: Tephritidae) decreases total antioxidant capacity and lipid peroxidation. Journal of Insect Physiology, 125, 104084.
  • 33. Mohsenzadeh S., Saffari B., Mohabatkar H. 2009. A new member of Tau-class glutathione S-transferase from barley leaves. Excli Journal, 8, 190–194.
  • 34. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15, 473–497.
  • 35. Nanda R., Agrawal V. 2016. Elucidation of zinc and copper induced oxidative stress DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environmental and Experimental Botany, 125, 31–41.
  • 36. Ovečka M., Takáč T. 2014. Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnology Advances, 32(1), 73–86.
  • 37. Palm E., Nissim W.G., Giordano C., Mancuso S., Azzarello E. 2017. Root potassium and hydrogen flux rates as potential indicators of plant response to zinc copper and nickel stress. Environmental and Experimental Botany, 143, 38–50.
  • 38. Pan X., Zhang D., Chen X., Bao A., Li L. 2011. Antimony accumulation growth performance antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water Air & Soil Pollution, 215, 517–523.
  • 39. Pandey N., Sharma C.P. 2002. Effect of heavy metals Co< sup> 2+ Ni< sup> 2+ and Cd< sup> 2+ on growth and metabolism of cabbage. Plant Science, 163(4), 753–758.
  • 40. Pandian S., Rakkammal K., Rathinapriya P., Rency A.S., Satish L., Ramesh M. 2020. Physiological and biochemical changes in sorghum under combined heavy metal stress: An adaptive defence against oxidative stress. Biocatalysis and Agricultural Biotechnology, 29, 101830.
  • 41. Park J.C., Hagiwara A., Park H.G., Lee J.S. 2020. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. Marine Pollution Bulletin, 156, 111080.
  • 42. Prasad K., Saradhi P.P., Sharmila P. 1999. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environmental and experimental Botany, 42(1), 1–10.
  • 43. Rai K.K., Pandey N., Meena R.P., Rai S.P. 2021. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicology and Environmental Safety, 208, 111750.
  • 44. Rai S., Singh P.K., Mankotia S., Swain J., Satbhai S.B. 2021. Iron Homeostasis in Plants and its Crosstalk with Copper Zinc and Manganese. Plant Stress, 100008.
  • 45. Ranjan R., Kumar N., Gautam A., Dubey A.K., Pandey S.N., Mallick S. 2021. Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L. Ecotoxicology and Environmental Safety, 208, 111418.
  • 46. Sadeghzadeh B. 2013. A review of zinc nutrition and plant breeding. Journal of soil science and plant nutrition, 13(4), 905–927.
  • 47. Shahzad B., Tanveer M., Che Z., Rehman A., Cheema S.A., Sharma A., Song H., ur Rehman S., Zhaorong D. 2018. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicology and environmental safety, 147, 935–944.
  • 48. Sharma P., Tripathi S., Sirohi R., Kim S.H., Ngo H.H., Pandey A. 2021. Uptake and mobilization of heavy metals through phytoremediation process from native plants species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. Environmental Technology & Innovation, 101629.
  • 49. Tamás L., Mistrík I., Zelinová V. 2017. Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environmental and Experimental Botany, 140, 34–40.
  • 50. Valavanidis A., Vlahogianni T., Dassenakis M., Scoullos M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and environmental safety, 64(2), 178–189.
  • 51. Vijayarengan P., Mahalakshmi G. 2013. Zinc toxicity in tomato plants. World Applied Sciences Journal 24(5), 649–653.
  • 52. Wang C., Zhang S.H., Wang P.F., Hou J., Zhang W.J., Li W., Lin Z.P. 2009. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75(11), 1468–1476.
  • 53. Wei L., Zhang J., Wang C., Liao W. 2020. Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiology and Biochemistry, 147, 161–171.
  • 54. Xu Z., Yang Z., Shu W., Zhu T. 2021. Combined toxicity of soil antimony and cadmium on earthworm Eisenia fetida: Accumulation biomarker responses and joint effect. Journal of Hazardous Materials Letters, 2, 100018.
  • 55. Ying M., Yasuda H., Kobayashi S., Sakurai N., Kidou S. 2019. Barley cold-induced CISP proteins contribute to the accumulation of heavy metals in roots. Environmental and Experimental Botany, 165, 53–58.
  • 56. Zeng H., Wu H., Yan F., Yi K., Zhu Y. 2021. Molecular regulation of zinc deficiency responses in plants. Journal of Plant Physiology, 153419.
  • 57. Zhang Q., Zeng G., Chen G., Yan M., Chen A., Du J., Huang J., Yi B., Zhou Y., He X. 2015. The effect of heavy metal-induced oxidative stress on the enzymes in white rot fungus Phanerochaete chrysosporium. Applied biochemistry and biotechnology, 175, 1281–1293.
  • 58. Zhao X., Joo J.C., Kim J.Y. 2021. Evaluation of heavy metal phytotoxicity to Helianthus annuus L. using seedling vigor index-soil model. Chemosphere, 275, 130026.
  • 59. Zouari M., Ahmed C.B., Zorrig W., Elloumi N., Rabhi M., Delmail D., Rouina B.B., Labrousse P., Abdallah F.B. 2016. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology and environmental safety, 128, 100–108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a92295fd-4ce6-45bd-b1a2-88b6f761c093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.