PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of trihalomethane formation after chlorine dioxide preoxidation followed by chlorination of natural organic matter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chlorine dioxide (ClO2) is widely used as powerful oxidant to remove taste, odor and pathogenic microorganisms with chlorine during water treatment. In this study, the formation of trihalomethanes (THMs) was investigated in sequential ClO2 and chlorination processes. During the study, water samples were collected from Terkos Lake water (TLW) and Büyükçekmece Lake water (BLW) in Istanbul. To understand the relationship between the formation of THMs and the characteristics of natural organic matter (NOM), changes in the molecular weight (MW) of NOM fractions before and after ClO2 oxidation were characterized with the ultrafiltration technique. The NOM fraction with MW <1 kDa is the dominant fraction among all the fractionated water samples. ClO2 oxidized NOM to more hydrophilic and smaller organic fractions as seen in the NOM fraction with MWCO <1 kDa. ClO2 preoxidation reduced THM concentrations but produced chlorite (ClO2 –) and chlorate (ClO3 –). The increase in ClO2 doses enhanced the reduction percentages of THMs during subsequent chlorination in water samples without or with bromide application. Bromine incorporation was higher in ClO2ClO2 preoxidized TLW and BLW samples. As a result, the findings of this study demonstrated that ClO2 preoxidation prior to chlorination is an applicable strategy for control of THMs in water treatment.
Słowa kluczowe
Rocznik
Strony
125--137
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
Bibliografia
  • [1] AGUSA E., NIKOLAY A.N., DAVID V., Disinfection by-products and their potential impact on the quality of water produced by desalination system, Desalination, 2009, 237, 214–237. DOI: 10.1016/j.desal.2007.11.059.
  • [2] WANG Y., JIA A., WU Y., WU C., CHEN L., Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation, Environ. Technol., 2015, 36 (4), 479–486. DOI: 10.1080/09593330.2014.952345.
  • [3] YANG X., GUO W., LEE W., Formation of disinfection byproducts upon chlorine dioxide pre-oxidation followed by chlorination or chloramination of natural organic matter, Chemosphere, 2013, 91 (11), 1477–1485. DOI: 10.1016/j.chemosphere.2012.12.014.
  • [4] PARINET J., TABARIES S., COULOMB B., VASSALO L., BOUDENNE J.L., Exposure levels to brominated compounds in seawater swimming pools treated with chlorine, Water Res., 2012, 46, 828–836. DOI:10.1016/j.watres.2011.11.060.
  • [5] SHARP E.L., PARSONS S.A., JEFFERSON B., Seasonal variations in natural organic matter and its impact on coagulation in water treatment, Sci. Total. Environ., 2006, 363 (1–3), 183–194. DOI: 10.1016/j.scitotenv.2005.05.032.
  • [6] TMH, Regulation concerning water intended for human consumption, Official News Paper 25730, Turkish Ministry of Health, Ankara 2005.
  • [7] USEPA, Alternative Disinfectants and Oxidants Guidance Manual, EPA815-R- 99-014. U.S. Environmental Protection Agency, Office of Water, Washington, DC, 1998.
  • [8] CHANG C.Y., HSIEH Y.H., LIN Y.M., HU P.Y., LIU C.C., WANG K.H., The organic precursors affecting the formation of disinfection by-products with chlorine dioxide, Chemosphere, 2001, 44, 1153–1158. 10.1016/S0045-6535(00)00285-X.
  • [9] MOLNAR J.J., AGBABA J.R., DALMACIJA B.D., KLASNJA M.T., KRAGULJ M.M., A comparative study of the effects of ozonation and TiO2-catalyzed ozonation on the selected chlorine disinfection by-product precursor content and structure, Sci. Total Environ., 2012, 425, 169–175. DOI: 10.1016/j.scitotenv.2012.03.020.
  • [10] WEI Q.-S., FENG C.-H., WANG D.-S., Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir. A case study, J. Hazard. Mater., 2008, 150 (2), 257–264. DOI: 10.1016/j.jhazmat.2007.04.096.
  • [11] LIU S., LIM M., FABRIS R., Comparison of photocatalytic degradation of natural organic matter in two Australian surface waters using multiple analytical techniques, Org. Geochem., 2010, 41, 124–129. DOI: 10.1016/j.orggeochem.2009.08.008.
  • [12] KITIS M., KARANFIL T., WIGTON A., Probing reactivity of dissolved organic matter for disinfection byproduct formation using XAD-8 resin adsorption and ultrafiltration fractionation, Water Res., 2002, 36 (15), 3834–3848. DOI: 10.1016/S0043-1354(02)00094-5.
  • [13] HAN J., ZHANG X., Evaluating the comparative toxicity of DBP mixtures from different disinfection scenarios: a new approach by combining freeze-drying or rotoevaporation with a marine polychaete bioassay, Environ. Sci. Technol., 2018, 52, 10552–10561. DOI: 10.1021/acs.est.8b02054.
  • [14] GAN W., HUANG H., YANG X., PENG Z., CHEN G., Emerging investigators series: disinfection by-products in mixed chlorine dioxide and chlorine water treatment, Environ. Sci. Water Res. Technol., 2016, 2, 838–847. DOI:10.1039/c6ew00061d.
  • [15] SWIETLIK J., SIKORSKA E., Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone, Water Res., 2004, 38, 3791–3799. DOI: 10.1016/j.watres.2004.06.010.
  • [16] JANG A., YU H.-W., OH S.-G., KIM I.S., PEPPER I., SNYDER S., Formation and speciation of haloacetic acids in seawater desalination using chlorine dioxide as disinfectant, J. End. Eng. Chem., 2015, 26, 193–201. DOI: 10.1016/j.jiec.2014.10.046.
  • [17] PLEWA M.J., WAGNER E.D., JAZWIERSKA P., Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity, Environ. Sci. Technol., 2004, 38 (1), 62–68. DOI:10.1021/es030477l.
  • [18] PADHI R.K., SUBRAMANIAN S., SATPATHY K.K., Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2 – and ClO3 – ) during treatment of different source water with chlorine and chlorine dioxide, Chemosphere, 2019, 218, 540–550. DOI: 10.1016/j.chemosphere.2018.11.100.
  • [19] HONG H., YAN X., SONG X., QIN Y., SUN H., LIN H., CHEN J., LIANG Y., Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values, Sci. Total Environ., 2017, 590 (591), 720–728. DOI: 10.1016/j.scitotenv.2017.03.032.
  • [20] ZHAO Z.-Y., GU J.-D., FAN X.-J., LI H.-B., Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments, J. Hazard. Mater., 2006, 134 (1–3), 60–66. DOI: 10.1016/j.jhazmat.2005.10.032.
  • [21] APHA, Standard Methods for the Examination of Water and Wastewater, 19th Ed., American Public Health Association, Washington, DC, 1998.
  • [22] EPA, Arsenic, inorganic (CASRN 7440–38-2), US Environmental Protection Agency, Integrated Risk Information System, 2007.
  • [23] USEPA, Method 300.1.1993, Determination of Inorganic Anions in Drinking Water by Ion Chromatography, Revision 1.0, 2006.
  • [24] HUA G.H., RECKHOW D.A., Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size, Environ. Sci. Technol., 2007, 41 (9), 3309–3315. DOI: 10.1021/es062178c.
  • [25] AMY G.L., SIERKA R.A., BEDESSEM J., PRICE D., TAN L., Molecular size distributions of dissolved organic matter, J. Am. Water Work Assoc., 1990, 84, 67–75. DOI: 10.1061/(ASCE)0733-9372(1990)116:6(1046).
  • [26] AL-OTOUM F., AL-GHOUTI M.A., AHMED T.A., ABU-DIEYEH M., ALI M., Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): occurrence in drinking water in Qatar, Chemosphere, 2016, 164, 649–656. DOI: 10.1016/j.chemosphere.2016.09.008.
  • [27] AVSAR E., TORÖZ I., HANEDAR A., KARADAĞ S.G., Investigation of the chlorine dioxide disinfection in terms of disinfection by product (DBP) formation of Ömerli raw water in İstanbul, Pamukkale University J. Eng. Sci., 2017, 23 (3), 297–302. DOI: 10.5505/pajes.2016.27132.
  • [28] AVSAR E., AVSAR D.D., HAYTA Ş., Evaluation of disinfection by-product (DBP) formation and fingerprint in a swimming pool in Bitlis/Turkey: a case study, Environ. Forens., 2020, 21 (3–4), 375–385. DOI: 10.1080/15275922.2020.1772413.
  • [29] AVSAR E., TORÖZ I., Seasonal determination and investigation of disinfection by product formation potentials (DBPFPs) of surface waters, Istanbul Omerli and Büyükçekmece case study, Anadolu University J. Sci. Technol. B, Theor. Sci., 2018, 6 (1), 22–35. DOI: 10.20290/aubtdb.333707.
  • [30] CROUE J.P., VIOLLEAU D., LABOUTRIE L., Disinfection by-product formation potentials of hydrophobic and hydrophilic natural organic matter fractions: a comparison between a low- and a high-humic water, [In:] S.E. Barrett, S.W. Krasner, G.L. Amy (Eds.), Natural Organic Matter and Disinfection By-Products, ACS Symposium Series, 761, Am. Chem. Soc., 2000, 139–153.
  • [31] LIANG L., SINGER P.C., Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water, Environ. Sci. Technol., 2003, 37, 2920–2928. DOI: 10.1021/es026230q.
  • [32] COLLIVIGNARELLI C., SORLINI S., Trihalomethane, chlorite and bromate formation in drinking water oxidation of Italian surface waters, J. Water Supply Res. Technol. Aqua, 2004, 53, 159–168. DOI: 10.2166/aqua.2004.0014.
  • [33] HELLER-GROSSMAN L., IDIN A., LIMONI-RELIS B., REBHUN M., Formation of cyanogen bromide and other volatile DBPS in the disinfection of bromide-rich lake water, Environ. Sci. Technol., 1999, 33, 932–937. DOI:10.1021/es980147e.
  • [34] OBOLENSKY A., SINGER P.C., Halogen substitution patterns among disinfection byproducts in the information collection rule database, Environ. Sci. Technol., 2005, 39 (8), 2719–2730. DOI: 10.1021/es0489339.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a90931d7-05ce-47b5-8eb2-b956c87ff9e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.