Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a method of the numerical modelling of micro-stresses in carbonised austenitic cast steel being developed during rapid cooling due to differences in the values of thermal expansion coefficients for this material phases – carbides and austenitic matrix. Micro-stresses are indicated as the main cause of crack initiation in the tooling elements of carburising furnaces being mainly made of austenitic cast steel. A calculation model of carbonised and thermally fatigued austenitic cast steel was developed based on the microstructure images obtained using light microscopy techniques and the phase composition evaluated with the X-ray diffraction method. The values of the stress tensor components and the reduced stress in the complex models of test material structure were determined numerically by the finite element method. The effort analysis was performed and the areas where development of cracks is to be expected were identified, which was experimentally confirmed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
635--641
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin, Institute of Transport Engineering, 11 H. Pobożnego Str., 70-507 Szczecin, Poland
autor
- Polish Naval Academy, Institute of Ship Construction and Operation, 69 Śmidowicza Str., 81-127 Gdynia, Poland
Bibliografia
- [1] B. Piekarski, Austenitic steel castings used in the construction of carburising furnaces, Szczecin 2003.
- [2] P. Gutowski, Study on the causes of cracking in pallets used in carburising furnaces. PhD thesis, Szczecin University of Technology, Szczecin 70310.
- [3] A. Drotlew, B. Piekarski, J. Tuleja, Adv. in Mater. Sci. 5, 41-48 (2005).
- [4] J. Tuleja, Influence of operational conditions on thermal fatigue of cast steel pallets in pusher carburizing furnaces. PhD thesis, Polish Naval Academy, Gdynia 81127.
- [5] J. Tuleja, Arch. Foundry Eng. 10, 163-168 (2010).
- [6] J. Tuleja, Arch. Foundry Eng. 8, 139-142 (2008).
- [7] J. Tuleja, P. Gutowski, Arch. Foundry Eng. 6, 590-597 (2006).
- [8] H.C. Furtado, I. Le May, Mat. Res. 1, 103-110 (2004).
- [9] D. Brooksbank, K.W. Andrews, JISI. 6, 595-599 (1968).
- [10] D. Brooksbank, K.W. Andrews, JISI. 4, 246-255, April (1972).
- [11] Y. Sato, S. Akimoto, Appl. Phys. 50, 5285-5291 (1979).
- [12] A.M. Huntz, Mat. Sci. Eng. A201, 211-228 (1995).
- [13] H. Stuart, N. Ridley, JISI. 204, 711-717 (1966).
- [14] H. Stuart, N. Ridley, JISI. 208, 1087-1092 (1970).
- [15] J. Tuleja, Arch. Foundry Eng. 10, 205-210 (2010).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a75b8d47-8349-4132-89af-48f63b6dfe12