PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Antagonism between lead and zinc ions in plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Antagonizm pomiędzy jonami ołowiu i cynku w roślinach
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research which describes antagonism between Pb-Zn in selected plant species from the area of Czestochowa – Mirow district (north-western part of the Czestochowa Upland). There were analyzed changes in the ratio of Pb/Zn in different organs of the tested plants as a function of the Zn content changes. The content of metals in the plants and the soil was determined using atomic absorption spectrophotometry AAS. In all organs of the plants there was observed antagonistic decrease of Pb uptake and accumulation, resulting from the increase in the concentration Zn. Antagonism between Zn and Pb in roots of the tested plants occurred at Zn content of 200–600 μg/g. In turn, antagonism in stems and flowers occurred at lower contents of zinc (100–180 μg/g). In leaves, antagonism between Pb and Zn occurred when Zn was present at the level of 300–800 μg/g. Ex definition of the analyses confirm the presence of antagonism of lead with regard to high levels of Zn. The study also confirmed that the degree of antagonism depends on the plant species.
PL
W artykule przedstawiono wyniki badań opisujące występowanie antagonizmu pomiędzy Pb-Zn w wybranych gatunkach roślin z terenu Częstochowy – dzielnica Mirów (północno-zachodnia część Wyżyny Częstochowskiej). Analizowano zmiany ilorazu zawartości Pb/Zn w poszczególnych organach badanych roślin jako funkcję zmian zawartości Zn. Zawartość metali w roślinach i w glebie została określona metodą atomowej spektrofotometrii absorpcyjnej AAS. We wszystkich organach roślin obserwowano antagonistyczny spadek pobierania i kumulacji Pb, będący skutkiem wzrostu koncentracji Zn. Antagonizm między Zn i Pb w korzeniach badanych roślin występował przy zawartości Zn 200–600 μg/g. Z kolei w łodygach i w kwiatach, antagonizm występował przy niższych zawartościach cynku (100–180 μg/g). W liściach antagonizm pomiędzy Pb i Zn pojawiał się w przypadku obecności Zn na poziomie zawartości 300–800 μg/g. Szczegółowe wyniki analiz potwierdzają obecność antagonizmu ołowiu w niektórych roślinach, w odniesieniu do dużych zawartości cynku. Badania potwierdziły także, że stopnień antagonizmu zależy od gatunku rośliny.
Słowa kluczowe
EN
lead   zinc   antagonism   plants  
PL
Rocznik
Strony
78--91
Opis fizyczny
Bibliogr. 56 poz., tab., wykr.
Twórcy
  • Jan Dlugosz University, Poland Department of Biology and Environmental Protection
autor
  • Silesian University of Medicine, Poland Department of Toxicology
  • Institute of Occupational Medicine and Environmental Health, Poland
autor
  • Silesian University of Medicine, Poland Department of Toxicology
Bibliografia
  • [1]. Aery, N.C. & Rana, D.K. (2007). Interactive effects of Zn, Pb and Cd in barley, Journal of Environmental Engineering and Science, 49, 1, pp. 71–76.
  • [2]. Aslan, M., Ünlü, M.Y., Türkmen, N. & Yilmaz, Y.Z. (2003). Sorption of cadmium and effects on growth, protein content and photosynthetic pigment composition of Nasturtium officinale R. Br. and Mentha aquatic L., Bulletin of Environmental Contamination and Toxicology, 71, pp. 323–329.
  • [3]. Badora, A. & Kozłowska-Strawska, J. (2011). Some quality indicators of arable plants, Ochrona Środowiska i Zasobów Naturalnych, 48, pp. 439–452. (in Polish)
  • [4]. Bednarek, R., Dziadowiec, H., Pokojska, U. & Prusinkiewicz, Z. (2005). Ecological and pedological research, Wydawnictwo Naukowe PWN, Warszawa 2005. (in Polish)
  • [5]. Bolan, N.S., Adriano, D.C., Mani, P.A. & Duraisamy, A. (2003). Immobilization and phytoavailability; toxicity of cadmium in variable charge soils. II. Effect of lime addition, Plant Soil, 25, pp. 187–198.
  • [6]. Bystrická, J., Tomáš, J., Tóth, T., Trebichalský, P. & Kavalcová, P. (2013). Potential antagonist Zn effect on faba bean (Faba vulgaris m.), Environmental Protection And Natural Resources, 24, 2, 56, pp. 21–24.
  • [7]. Czarnowska, K. (1996). Total contents of heavy metals in luvisols of the Siedlce Plateau, Zeszyty Naukowe SGGW-AR Warszawa, Rolnictwo,16, pp. 39–47. (in Polish).
  • [8]. Dziubanek, G., Baranowska, R. & Oleksiuk, K. (2012). Heavy metals in the soils of Upper Silesia – a problem from the past or a present hazard? Journal of Ecology and Health, 16, 4, pp. 169–176. (In Polish)
  • [9]. Eapen, S. & D’souza, S.F. (2005). Prospect of genetic engineering of plants for phytoremediation of toxic metals, Biotechnology Advances, 23, pp. 97–114.
  • [10]. Furmanek, T. & Andrzejewska-Ponomarev, M. (2006). The effects of lead on growing tomato plants Lycopersi-con Sp. determined in in vitro cultures, Słupskie Prace Biologiczne 3, pp. 5–12. (in Polish)
  • [11]. Gruca-Królikowska, S. & Wacławek, W. (2006). Metals in the environment. Vol. II Effect of heavy metals on plants, Chemia. Dydaktyka. Ekologia. Metrologia. 11, 1−2, pp. 41–46. (in Polish)
  • [12]. Hereźniak, J. (1984). Documentation of the proposed the Prof. Wladyslaw Hyla forest reserve Gąszczyk in Czestochowa, Łódź 1984. (in Polish)
  • [13]. Hławiczka, S. (2008). Heavy metals in the environment, PIETU, Wydawnictwo Ekonomia i Środowisko, Białystok 2008. (in Polish)
  • [14]. Jadia, C.D. & Fulekar, M.H. (2009). Phytoremediation of heavy metals: Recent techniques, African Journal of Biotechnology, 8, pp. 921–928.
  • [15]. Janowska, B. & Szymański, K. (2005). Immobilization of heavy metals in aquatic and terrestrial environment subjected to anthropogenic pressure, in: VII National Conference on: Comprehensive and detailed problems of the environment engineering, T. Piecuch (Ed.), Wyd. Politechniki Koszalińskiej, Koszalin 2005. (in Polish)
  • [16]. Jin, C.W., Zheng, S.J., He, Y.F., Zhou, G.D. & Zhou, Z.X. (2005). Lead contamination in tea garden soils and factors affecting its bioavailability, Chemosphere, 59, pp. 1151–1159.
  • [17]. Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace elements from soil to human, Springer-Verlag, Berlin–Heidelberg 2007.
  • [18]. Kabata-Pendias, A. & Pendias, H. (2001-a). Biogeochemistry of trace elements, Wydawnictwo Naukowe PWN, Warszawa 2001. (in Polish)
  • [19]. Kabata-Pendias, A. & Pendias, H. (2001-b). Trace elements in soils and plants, CRC Press LLC, Boca Raton, Florida, USA 2001.
  • [20]. Karczewska, A. Spiak, Z. Kabała, C. Gałka, B. Szopka, K. Jezierski, P. & Kocan, K. (2008). Evaluation of the use of supported phytoextraction in the remediation of soils contaminated by copper smelter emissions, Wydawnictwo Zante, Wrocław 2008. (in Polish)
  • [21]. Khan, S., Naz, A., Asim, M., Ahmad, S.S., Yousaf, S. & Muhammad, S. (2013). Toxicity and bioaccumulation of heavy metals in spinach seedlings grown on freshly contaminated soil, Pakistan Journal of Botany, 45, S1, pp. 501–508.
  • [22]. Korzeniowska, J. & Stanisławska-Glubiak, E. (2007). Reactions of three varieties of mustard to contamination with copper, zinc and nickel, Ochrona Środowiska i Zasobów Naturalnych, 32, pp. 87–93. (in Polish)
  • [23]. Krzesłowska, M., Samardakiewicz, S. & Woźny, A. (2010). Trace metals in: The reactions of plant cells to stress factors. Volume 2, Woźny A. & Goździcka-Józefiak, A. (Ed.). Wyd. Nauk. Uniwersytetu w Poznaniu, Poznań 2010, pp. 90–146. (in Polish)
  • [24]. Krzywy, I., Krzywy, E., Pastuszak-Gabinowska, M. & Brodkiewicz, A. (2010). Lead- is there something to be afraid of? Annales Academiae Medicae Stetinensis, 56, 2, pp. 118–128. (in Polish)
  • [25]. Kwiatkowska-Malina, J. & Maciejewska, A. (2011). The uptake of heavy metals by plants at differentiated soil reaction and content of organic matter, Ochrona Środowiska i Zasobów Naturalnych, 49, pp. 43–51. (in Polish)
  • [26]. Lehmann, C. & Rebele, F. (2004). Evaluation of heavy metal tolerance in Calamagrostis epigeios and Elymus repens revealed copper tolerance in a copper smelter population of C. epigeios, Environmental and Experimental Botany, 51, pp. 199–213.
  • [27]. Marschner, H. (1995). Mineral nutrition of higher plants, Academic Press Ltd., London, Great Britain 1995.
  • [28]. Mengel, K., Kirkby, E.A., Kosegarten, H. & Appel, T. (2001). Principles of plant nutrition, Kluwer Acad. Publ., The Netherlands 2001.
  • [29]. Musielińska, R., Kowol, J., Kwapuliński, J., Rochel, R. & Oleś, U. (2014). Discrimination of lead in plants by calcium and magnesium, Ekologia i Technika, 22, 3, pp. 106–110. (in Polish)
  • [30]. Nagajyoti, P.C., Lee, K.D. & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review, Environmental Chemistry Letters, 8, pp. 199–216.
  • [31]. Niesiobędzka, K. (2000). The bioavailability forms of heavy metals in soils, Ecological Chemistry and Engineering, 7, 5, pp. 521–530. (in Polish)
  • [32]. Niesiobędzka, K., Wojtkowska, M. & Krajewska, E. (2005). Migration of zinc, lead and cadmium in the system soil – vegetation in the urban environment, IOŚ, Warszawa 2005. (in Polish)
  • [33]. Ociepa, A., Pruszek, K., Lach, J. & Ociepa, E. (2008). Effect of long-term soil fertilization with manure and sewage sludge on the increase in the content of heavy metals in soils, Ecological Chemistry and Engineering S, 1, 15, pp. 103–109. (In Polish)
  • [34]. Ociepa-Kubicka, A. & Ociepa, E. (2012). Toxic effects of heavy metals on plants, animals, humans, Inżynieria i Ochrona Środowiska, 15, 2, pp. 169–180. (in Polish)
  • [35]. Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G. & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain, The International Journal of Biochemistry & Cell Biology, 41, pp. 1665–1677.
  • [36]. Rao, M.K.K. (2006). Physiology and molecular biology of stress tolerance in plants, Springer, Netherlands 2006.
  • [37]. Regulation of the Minister of Environment on soil quality standards and ground quality standards, Dz. U. no 165/2002 pos. 1359. (in Polish)
  • [38]. Rout, G.R. & Das, P. (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc, Agronomie, 23, 1, pp. 3–11.
  • [39]. Rudd, T., Lake, D.L., Mehrotra, I., Sterritt, R.M., Kirk, P.W.W., Campbell, J.A. & Lester, J.N. (1988). Characterisation of metal forms in sewage sludge by chemical extraction and progressive acidification, Science of the Total Environment, 74, pp. 149–175.
  • [40]. Sady, W. (2001). Factors limiting the content of nitrates and heavy metals in vegetables, Przemysł Fermentacyjny i Owocowo-Warzywny, 5, pp. 21–23. (in Polish)
  • [41]. Sas-Nowosielska, A. (2009). Phytotechnologies in the remediation of contaminated sites by zinc-lead industry, Monograph No. 189, Wyd. Politechniki Częstochowskiej, Częstochowa 2009. (in Polish)
  • [42]. Sauve S. McBride M.B. Norvell W.A. Hendershot W.H. (1997). Copper solubility and speciation of in situ contaminated soils as effects of copper level, pH and organic matter, Water, Air Soil Pollut., 100, pp. 133–149.
  • [43]. Shu, W.S., Ye, Z.S., Zhang, Z.Q. & Wong, M.H. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodum dactylon, Environmental Pollution, 120, pp. 455–453.
  • [44]. Siwek, M. (2008). Plants in contaminated with heavy metals industrial environment. Part I. Uptake, transport and toxicity of heavy metals (trace), Wiadomości Botaniczne, 52, 1/2, pp. 7–22. (in Polish)
  • [45]. Skołożdrzy, J., Perła, J., Smól, J. & Twardowski, T. (2001). Heavy metals: iron, lead and cadmium – a threat to the plants only? Ochrona Roślin, 5, 6, pp. 2–6. (in Polish)
  • [46]. Suna, Y., Zhou, Q., Xie, X. & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China, Journal of Hazardous Materials, 174, pp. 455–462.
  • [47]. Symeonidis, L. & Karataglis, S. (1992). Interactive effects of cadmium, lead and zinc on root growth of two metal tolerant genotypes of Holcus lanatus L., Biometals, 5, 3, pp. 173–178.
  • [48]. Terelak, H., Motowicka-Terelak, T., Stuczyński, T. & Pietruch, C. (2000). Trace elements (Cd, Cu, Ni, Pb, Zn) in soils of Polish farmland, IOŚ, Warszawa 2000. (in Polish)
  • [49]. Tyksiński, W. & Kurdubska, J. (2004). Varietal differences in the accumulation of cadmium and lead by radish (Raphanus sativus L.), Rocznik Akademii Rolniczej w Poznaniu, 356, pp. 209–215. (in Polish)
  • [50]. Usman, A.R.A., Kuzyakov, Y., Lorenz, K. & Stahr, K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds, Journal of Plant Nutrition and Soil Science, 169, pp. 205–212.
  • [51]. Vaillant, N., Monnet, F., Hitmi, A., Sallonon, H. & Cou-Dret, A. (2005). Comparative study of responses in four Datura species to a zinc stress, Chemosphere, 59, pp. 1005–1013.
  • [52]. Wacławek, W. & Maćko, A. (2001). Relationships between soil properties and speciation forms of heavy metals, Chemia i Inżynieria Środowiska, 8, 2–3, pp. 253–268. (in Polish)
  • [53]. Whiteside, P.J. & Milner, A. (1984). Pye Unicam Atomic Absorption Data Book, Pye Unicam Ltd, 1984.
  • [54]. Woźny, A. (1995). Lead in plant cells: uptake, reactions, resistance, Wydawnictwo Sorus, Poznań 1995. (in Polish)
  • [55]. Wybieralski, J. & Maciejewska, M. (2011). Research on the level of heavy metal contamination of soil and plants in the border areas in Rosołówek near Szczecin, Chemia i inżynieria ekologiczna, 8, 7, pp. 741–748. (in Polish)
  • [56]. Zwonitzer, J.C., Pierzynski, G.M. & Hettiarachchi, G.M. (2003). Effects of phosphorus addition on lead, cadmium, and zinc bioavailabilities in a metal-contaminated soil, Water, Air & Soil Pollution, 143, pp. 193–209.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a750bbfa-898e-450c-ae8b-68696f7819c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.