PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of dynamic behaviors of concrete under various strain rates

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the dynamic behavior of the concrete is different from that under static load, this research focuses on the study of dynamic responses of concrete by simulating the split Hopkinson pressure bar (SHPB) test. Finite element code LS-DYNA is used for modeling the dynamic behaviors of concrete. Three continuous models are reviewed and the Holmquist-Johnson-Cook model (HJC) is introduced in detail. The HJC model which has been implemented in LS-DYNA is used to represent the concrete properties. The SHPB test model is established and a few stress waves are applied to the incident bar to simulate the dynamic concrete behaviors. The stress-strain curves are obtained. The stress distributions are analyzed. The crack initiation and propagation process are described. It is concluded that: the HJC model can modeling the entire process of the fracture initiation and fragmentation; the compressive of the concrete is significantly influenced by the strain rates.
Rocznik
Strony
21--36
Opis fizyczny
Bibliogr. 14 poz., il., tab.
Twórcy
autor
  • Kunming University of Science and Technology, Faculty of Public Security and Emergency Management, Kunming, China
autor
  • Kunming University of Science and Technology, Faculty of Land Resource Engineering, Kunming
Bibliografia
  • 1. Zhao, J., et al., Rock dynamics research related to cavern development for ammunition storage. Tunnelling and Underground Space Technology, 1999. 14(4): p. 513-526.
  • 2. Liu, H., Y. Kang, and P. Lin, Hybrid finite-discrete element modeling of geomaterials fracture and fragment muck-piling. International Journal of Geotechnical Engineering, 2013.
  • 3. Kumar, A., The effect of stress rate and temperature on the strength of basalt and granite. Geophysics, 1968. 33(3): p. 501-510.
  • 4. Bazant, Z.P., S.-p. Bai, and R. Gettu, Fracture of rock: effect of loading rate. Engineering Fracture Mechanics, 1993. 45: p. 393-393.
  • 5. Blanton, T. Effect of strain rates from 10-2 to 10 sec-1 in triaxial compression tests on three rocks. in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1981. Elsevier.
  • 6. Johnson, G., et al., Numerical Algorithms in a Lagrangian Hydrocode. 1997, DTIC Document.
  • 7. Li, X., T. Lok, and J. Zhao, Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mechanics and Rock Engineering, 2005. 38(1): p. 21-39.
  • 8. Sukontasukkul, P., P. Nimityongskul, and S. Mindess, Effect of loading rate on damage of concrete. Cement and Concrete Research, 2004. 34(11): p. 2127-2134.
  • 9. Lu, G., X. Li, and K. Wang, A numerical study on the damage of projectile impact on concrete targets. Computers & Concrete, 2012. 9(1): p. 21-33.
  • 10. Holqmuist, T., G. Johnson, and W. Cook. A computational constitutive model for concrete subjected to large strains, high strain rate, and high pressures. in 14th international symposium on ballistics. 1993.
  • 11. Taylor, L.M., E.-P. Chen, and J.S. Kuszmaul, Microcrack-induced damage accumulation in brittle rock under dynamic loading. Computer methods in applied mechanics and engineering, 1986. 55(3): p. 301-320.
  • 12. Bush, B.M., Analytical evaluation of concrete penetration modeling techniques. 2010.
  • 13. Zhou, X., et al., Numerical prediction of concrete slab response to blast loading. International Journal of Impact Engineering, 2008. 35(10): p. 1186-1200.
  • 14. Kwak, H. and H. Gang, A bi-axial model for concrete under high-strain rate conditions. Materials characterisation, 2015: p. 319-330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a5e922ea-2847-45b1-98b7-c868757596ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.