PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Chemometric tools in the investigation of the mineral composition of food products derived from seaweed

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metody chemometryczne w badaniu składu produktów spożywczych wytworzonych z alg
Języki publikacji
EN
Abstrakty
EN
The work presents a new chemometric-assisted approach to distinguish commercially available food products based on their chemical composition. The analysed material consisted of 15 seaweeds (red Rhodophyta and brown Phaeophyta macroalgae) of various origin. The concentrations of the main nutrients (K, Na, Ca, and Mg) and essential trace elements (Fe, Mn, and Zn) were determined using flame atomic emission spectroscopy and atomic absorption spectrometry. The highest concentrations of nutrients were found in the products of brown algae (for example: the highest concentration of Ca was determined in the Kombu algae product - 13.92 mg/g dr.wt.; Mg - in Wakame - 9.85 mg / g dr.wt.) compared to the products of red algae (the lowest concentrations of Ca and Mg were found in Dulce algae - 1.87 mg / g dr.wt. and 2.83 mg / g dr.wt., respectively). Chemometric tools, i.e. principal components analysis and cluster analysis combined with heat maps allowed to distinguish samples clearly by species, red algae (Nori, Dulse, Irish moss) from brown ones (Wakame, Kombu). However, neither the place of harvest (country of origin) nor the food processing has allowed the separation of the food samples into individual groups. It was proven that the nutritional properties of food derived from naturally grown sea algae depend on the characteristic of the species, rather than on the place of harvest. Furthermore, the method of food processing changes its mineral composition to a very limited degree.
Twórcy
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków, Polska
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków, Polska
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków, Polska
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków, Polska
Bibliografia
  • [1] A. Lopez-Santamarina, J.M. Miranda, A. Del Carmen Mondragon, A. Lamas, A. Cardelle-Cobas, C.M. Franco, A. Cepeda, Potential use of marine seaweeds as prebiotics: A review, Molecules. 25 (2020) 1-26. https://doi.org/10.3390/molecules25041004.
  • [2] B.K. Tiwari, D.J. Troy, Seaweed Sustainability: Food and Non-Food Applications, Elsevier, Academic Press, 2015.
  • [3] P.B. Andrade, M. Barbosa, R.P. Matos, G. Lopes, J. Vinholes, T. Mouga, P. Valentão, Valuable compounds in macroalgae extracts, Food Chem. 138 (2013) 1819-1828. https://doi.org/10.1016/j.foodchem.2012.11.081.
  • [4] B. Kilinç, S. Cirik, G. Turan, Seaweeds for Food and Industrial Applications, in: Seaweeds Food Ind. Appl., INTECH, 2013. https://doi.org/http://dx.doi.org/10.5772/53172.
  • [5] B. Gullón, M. Gagaoua, F.J. Barba, P. Gullón, W. Zhang, J.M. Lorenzo, Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products, Trends Food Sci. Technol. 100 (2020) 1-18. https://doi.org/10.1016/j.tifs.2020.03.039.
  • [6] R.P. John, G.S. Anisha, K.M. Nampoothiri, A. Pandey, Micro and macroalgal biomass: A renewable source for bioethanol, Bioresour. Technol. 102 (2011) 186-193. https://doi.org/10.1016/j.biortech.2010.06.139.
  • [7] E. Shannon, N. Abu-Ghannam, Seaweeds as nutraceuticals for health and nutrition, Phycologia 58 (2019) 563-577. https://doi.org/10.1080/00318884.2019.1640533.
  • [8] D. Rodrigues, A.C. Freitas, L. Pereira, T.A.P. Rocha-Santos, M.W. Vasconcelos, M. Roriz, L.M. Rodríguez-Alcalá, A.M.P. Gomes, A.C. Duarte, Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal, Food Chem. 183 (2015) 197-207. https://doi.org/10.1016/j.foodchem.2015.03.057.
  • [9] P. Cherry, S. Yadav, C.R. Strain, P.J. Allsopp, E.M. Mcsorley, R.P. Ross, C. Stanton, Prebiotics from seaweeds: An ocean of opportunity?, Mar. Drugs. 17 (2019) 1-35. https://doi.org/10.3390/md17060327.
  • [10] A.L. Charles, M.A. Alamsjah, Application of chemometric techniques: An innovative approach to discriminate two seaweed cultivars by physico-functional properties, Food Chem. 289 (2019) 269-277. https://doi.org/10.1016/j.foodchem.2019.03.051.
  • [11] S. Gómez-Zorita, M. González-Arceo, J. Trepiana, I. Eseberri, A. Fernández-Quintela, I. Milton-Laskibar, L. Aguirre, M. González, M.P. Portillo, Anti-obesity effects of macroalgae, Nutrients. 12 (2020) 1-29. https://doi.org/10.3390/nu12082378.
  • [12] E. Kim, S.-Y. Ju, Asthma and Dietary Intake of Fish, Seaweeds, and Fatty Acids in Korean Adults, Nutrients. 11 (2019) 1-12.
  • [13] E.M. Brown, P.J. Allsopp, P.J. Magee, C.I. Gill, S. Nitecki, C.R. Strain, E.M. Mcsorley, Seaweed and human health, Nutr. Rev. 72 (2014) 205-216. https://doi.org/10.1111/nure.12091.
  • [14] S. Mohamed, S.N. Hashim, H.A. Rahman, Seaweeds: A sustainable functional food for complementary and alternative therapy, Trends Food Sci. Technol. 23 (2012) 83-96. https://doi.org/10.1016/j.tifs.2011.09.001.
  • [15] A. Mirzayeva, R. Castro, C. G. Barroso, E. Durán-Guerrero, Characterization and differentiation of seaweeds on the basis of their volatile composition, Food Chem. 336 (2021) 127725. https://doi.org/10.1016/j.foodchem.2020.127725.
  • [16] S. Gupta, N. Abu-Ghannam, Bioactive potential and possible health effects of edible brown seaweeds, Trends Food Sci. Technol. 22 (2011) 315-326. https://doi.org/10.1016/j.tifs.2011.03.011.
  • [17] P.T. Chan, P. Matanjun, Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii, Food Chem. 221 (2017) 302-310. https://doi.org/10.1016/j.foodchem.2016.10.066.
  • [18] M. Ito, K. Koba, R. Hikihara, M. Ishimaru, T. Shibata, H. Hatate, R. Tanaka, Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast, Food Chem. 255 (2018) 147-156. https://doi.org/10.1016/j.foodchem.2018.02.070.
  • [19] A. Beratto, C. Agurto, J. Freer, C. Peña-Farfal, N. Troncoso, A. Agurto, R. del P. Castillo, Chemical Characterization and Determination of the Anti-Oxidant Capacity of Two Brown Algae with Respect to Sampling Season and Morphological Structures Using Infrared Spectroscopy and Multivariate Analyses, Appl. Spectrosc. 71 (2017) 2263-2277. https://doi.org/10.1177/0003702817715654.
  • [20] S. Ryan, P. McLoughlin, O. O’Donovan, A comprehensive study of metal distribution in three main classes of seaweed, Environ. Pollut. 167 (2012) 171-177. https://doi.org/10.1016/j.envpol.2012.04.006.
  • [21] L. Mišurcová, L. Machů, J. Orsavová, Seaweed minerals as nutraceuticals, Adv. Food Nutr. Res. 64 (2011) 371-390. https://doi.org/10.1016/B978-0-12-387669-0.00029-6.
  • [22] C.F. Saá, Atlantic Sea Vegetables Nutrition and Health. Properties, recipes and descriptions, AlgAran, Spain, 2002.
  • [23] A. Edwards, M. Hanniffy, D. Heesch, S. Hernandez-Katun, J. Moniz, M. Queguineur, B. Ratcliff, J. Soler-Vila, A. Wan, Macoalgae Fact-sheets.pdf, (2012). http://www.seaweed.ie/.
  • [24] Porto-Muiños, (2021). https://www.portomuinos.com/ (accessed March 1, 2021).
  • [25] AlgAran Seaweed Products, (2021). http://www.seaweedproducts.ie/ (accessed March 1, 2021).
  • [26] Mara Seaweed, (2021). https://maraseaweed.com/ (accessed March 1, 2021).
  • [27] Carraig Fhada Seaweed, (2021). https://www.ireland-guide.com/establishment/carraig-fhada-seaweed.11099.html (accessed March 1, 2021).
  • [28] Wild Irish Seaweeds, (2021). https://www.wildirishseaweeds.com (accessed March 1, 2021).
  • [29] J. Moreda-Piñeiro, E. Alonso-Rodríguez, P. López-Mahía, S. Muniategui-Lorenzo, D. Prada-Rodríguez, A. Moreda-Piñeiro, P. Bermejo-Barrera, Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed, Anal. Chim. Acta. 598 (2007) 95-102. https://doi.org/10.1016/j.aca.2007.07.030.
  • [30] H. Hoffmann, Kernel PCA for novelty detection, Pattern Recognit. 40 (2007) 863-874. https://doi.org/10.1016/j.patcog.2006.07.009.
Uwagi
1. This work was supported from the subsidy of the Ministry of Education and Science for the AGH University of Science and Technology in Kraków (Project No 16.16.160.557).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a49c1000-36ed-4f81-b2ae-b997c26e2299
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.