PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uncertainty analysis of operational conditions in selective artificial ground freezing applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Artificial ground freezing (AGF) systems are susceptible to uncertain parameters highly affecting their performance. Particularly, selective artificial ground freezing (S-AGF) systems involve several uncertain operational conditions. In this study, uncertainty analysis is conducted to investigate four operational parameters: 1) coolant inlet temperature, 2) coolant flow rate, 3) pipes emissivity, and 4) pipes eccentricity. A reduced-order model developed and validated in our previous work for field-scale applications is exploited to simulate a total of 5,000 cases. The uncertain operational parameters are set according to Monte Carlo analysis based on field observations of a field-scale freeze-pipe in the mining industry extending to 460 m below the ground surface. The results indicate that the freezing time can range between 270 and 350 days with an average of 310 days, whereas the cooling load per one freeze-pipe ranges from 90 to 160 MWh, with an average of 129 MWh. Furthermore, it is observed that the freezing time and energy consumed are mostly dominated by the coolant inlet temperature, while energy dissipated in the passive zone (where ground freezing is not needed) is mostly affected by pipes emissivity. Overall, the conclusions of this study provide useful estimations for engineers and practitioners in the AGF industry.
Rocznik
Strony
169--179
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • McGill University, Mining Engineering Department, Montreal, Quebec, Canada
autor
  • McGill University, Mining Engineering Department, Montreal, Quebec, Canada
autor
  • McGill University, Mining Engineering Department, Montreal, Quebec, Canada
Bibliografia
  • [1] Alzoubi MA, Xu M, Hassani FP, Poncet S, Sasmito AP. Artificial ground freezing: a review of thermal and hydraulic aspects. Tunn Undergr Space Technol 2020;104:103534.
  • [2] Harris JS. Ground freezing in practice. Thomas Telford; 1995.
  • [3] Sarkkinen M, Kujala K, Gehör S. Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings [Internet] J Sustain Min 2019;18(3):115-26. Available from: https://doi.org/10.1016/j.jsm.2019.04.001.
  • [4] Zueter AF, Newman G, Sasmito AP. Numerical study on the cooling characteristics of hybrid thermosyphons: case study of the Giant Mine, Canada [Internet] Cold Reg Sci Technol 2021;189 (February):103313. Available from: https://doi.org/10.1016/j.coldregions.2021.103313.
  • [5] Newman G, Newman L, Chapman D, Harbicht T. Artificial ground freezing: an environmental best practice at Cameco's Uranium mining operations in northern Saskatchewan, Canada. Ger: Mine Water-Managing Challenges Int Mine Water Assoc Aachen; 2011. p. 113-8.
  • [6] Zueter A, Nie-Rouquette A, Alzoubi MA, Sasmito AP. Thermal and hydraulic analysis of selective artificial ground freezing using air insulation: experiment and modeling. Comput Geotech 2020;120:103416.
  • [7] Wang B, Rong C, Cheng H, Yao Z, Cai H. Research and application of the local differential freezing technology in deep alluvium. Adv Civ Eng 2020:2020.
  • [8] Luo Z, Hu B, Wang Y, Di H. Effect of spatial variability of soft clays on geotechnical design of braced excavations: a case study of Formosa excavation [Internet] Comput Geotech 2018;103(January):242-53. Available from: https://doi.org/10.1016/j.compgeo.2018.07.020.
  • [9] Pan Y, Shi G, Liu Y, Lee FH. Effect of spatial variability on performance of cement-treated soil slab during deep excavation [Internet] Construct Build Mater 2018;188:505-19. Available from: https://doi.org/10.1016/j.conbuildmat.2018.08.112.
  • [10] Pan Y, Liu Y, Xiao H, Lee FH, Phoon KK. Effect of spatial variability on short- and long-term behaviour of axially- loaded cement-admixed marine clay column [Internet] Construct Build Mater 2018;94:150-68. Available from: https://doi.org/10.1016/j.compgeo.2017.09.006.
  • [11] Spanidis PM, Roumpos C, Pavloudakis F. A fuzzy-ahp methodology for planning the risk management of natural hazards in surface mining projects. Sustain Times 2021;13(4):1-23.
  • [12] Qiu P, Li P, Hu J, Liu Y. Modeling seepage flow and spatial variability of soil thermal conductivity during artificial ground freezing for tunnel excavation. Appl Sci 2021;11(14).
  • [13] Wang T, Zhou G, Wang J, Zhou L. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe. Heat Mass Tran 2018;54(9):2845-52.
  • [14] Wang T, Liu Y, Zhou G, Wang D. Effect of uncertain hydrothermal properties and freezing temperature on the thermal process of frozen soil around a single freezing pipe [Internet] Int Commun Heat Mass Tran 2021;124(April):105267. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2021.105267.
  • [15] Wang T, Zhou G, Xu D, Wang D, Wang J. Field experiment and stochastic model of uncertain thermal processes of artificial frozen wall around multi-circle freezing pipe [Internet] Int J Therm Sci 2021;160(October 2019):106658. Available from: https://doi.org/10.1016/j.ijthermalsci.2020.106658.
  • [16] Liu Y, Li KQ, Li DQ, Tang XS, Gu SX. Coupled thermal-hydraulic modeling of artificial ground freezing with uncertainties in pipe inclination and thermal conductivity [Internet] Acta Geotech 2022;17(1):257-74. Available from: https://doi.org/10.1007/s11440-021-01221-w.
  • [17] Vitel M, Rouabhi A, Tijani M, Guérin F. Thermo-hydraulic modeling of artificial ground freezing: application to an underground mine in fractured sandstone. Comput Geotech 2016;75:80-92.
  • [18] Tounsi H, Rouabhi A, Tijani M, Guerin F. Thermo-hydro-mechanical modeling of artificial ground freezing: application in mining engineering. Rock Mech Rock Eng 2019;1-19.
  • [19] Alzoubi MA, Nie-rouquette A, Sasmito AP. International Journal of Heat and Mass Transfer Conjugate heat transfer in artificial ground freezing using enthalpy-porosity method : experiments and model validation [Internet] Int J Heat Mass Tran 2018;126:740-52. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.059.
  • [20] Voller VR, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Tran 1987;30(8):1709-19.
  • [21] Zueter AF, Xu M, Alzoubi MA, Sasmito AP. Development of conjugate reduced-order models for selective artificial ground freezing: thermal and computational analysis. Appl Therm Eng 2021;190:116782.
  • [22] Zueter AF, Madiseh AG, Hassani FP, Sasmito AP. Effect of freeze pipe eccentricity in selective artificial ground freezing applications. ASME J Therm Sci Eng Appl 2022;14:011015.
  • [23] Swaminathan CR, Voller VR. A general enthalpy method for modeling solidification processes. Metall Trans B 1992;23(5):651-64.
  • [24] Kaviany M. Principles of heat transfer in porous media. Springer Science & Business Media; 2012.
  • [25] Alzoubi MA, Sasmito AP, Madiseh A, Hassani FP. Freezing on demand (FoD): an energy saving technique for artificial ground freezing. In: Energy procedia. Elsevier; 2019. p. 4992-7.
  • [26] Cengel YA, Klein S, Beckman W. Heat transfer: a practical approachvol. 141. New York: McGraw-Hill; 1998.
  • [27] Bejan A. Convection heat transfer. John Wiley & Sons; 2013.
  • [28] TM L. Laminar forced convection in eccentric annuli. J Chem Inf Model 1970;14:1161-73.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a43f37b1-78a2-43f9-80d8-49aa47113c5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.