PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arsenate removal on the ion exchanger modified with cerium(III) ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The iron oxide ion exchanger Ferrix A33E was successfully modified with cerium(III) ions to obtain Ferrix A33E-Ce(III) providing much better sorption properties in relation to the As(V) species. The new material has been characterized using a number of techniques including scanning electron microscopy SEM, nitrogen adsorption/desorption isotherms, Fourier transform infrared spectroscopy FTIR and X-ray photoelectron spectroscopy XPS. At optimal pH 6 the main mechanism of arsenate adsorption on A33E-Ce(III) was electrostatic attraction and formation of monodentate and bidentate surface complexes. The process was exothermic and spontaneous. Unlike the unmodified ion exchanger, A33E-Ce(III) could completely remove arsenic from the arsenate solution at a concentration of 50 mg/dm3 in 60 minutes. Furthermore, the maximum sorption capacity for As(V) was determined to be 60.41 mg/g which almost doubled after modification with cerium(III) ions. It is also worth noting that even after three cycles of sorption/desorption A33E-Ce(III) exhibited a higher sorption capacity than unmodified A33E before the arsenate adsorption. It can be concluded that modifying the sorbent with a small amount of cerium(III) ions boosts its sorption properties significantly, improves effectiveness of water purification and reduces the overall operation cost
Słowa kluczowe
Rocznik
Strony
art. no. 147412
Opis fizyczny
Bibliogr. 63 poz., rys., wykr.
Twórcy
  • Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
  • Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
Bibliografia
  • ADELOJU, S.B., KHAN, S., PATTI, A.F., 2021. Arsenic contamination of groundwater and its implications for drinking water quality and human health in under‐developed countries and remote communities—a review. Appl. Sci. 11, 1–25.
  • ALI, I., ALHARBI, O.M.L., ALOTHMAN, Z.A., ALWARTHAN, A., AL-MOHAIMEED, A.M., 2019. Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253.
  • ALOTHMAN, Z.A., 2012. A review: Fundamental aspects of silicate mesoporous materials. Materials. 5, 2874–2902.
  • AYAWEI, N., EBELEGI, A.N., WANKASI, D., 2017. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 3039817.
  • BADRUDDOZA, A.Z.M., SHAWON, Z.B.Z., RAHMAN, M.T., HAO, K.W., HIDAJAT, K., UDDIN, M.S., 2013. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem. Eng. J. 225, 607–615.
  • BERGMANN, C.P., MACHADO, F.M., 2015. Carbon nanomaterials as adsorbents for environmental and biological applications. Springer International Publishing, Switzerland.
  • BHANDARI, P., BANJARA, M.R., SINGH, A., KANDEL, S., RAWAL, D.S., PANT, B.R., 2021. Water quality status of groundwater and municipal water supply (tap water) from bagmati river basin in Kathmandu valley, Nepal. J. Water Sanit. Hyg. Dev. 11, 102–111.
  • CHAUDHRY, S.A., ZAIDI, Z., SIDDIQUI, S.I., 2017. Isotherm, kinetic and thermodynamics of arsenic adsorption onto iron-zirconium binary oxide-coated sand (IZBOCS): Modelling and process optimization. J. Mol. Liq. 229, 230–240.
  • CHOWDHURY, M.R.I., MULLIGAN, C.N., 2011. Biosorption of arsenic from contaminated water by anaerobic biomass. J. Hazard. Mater. 190, 486–492.
  • DEHGHANI, M.H., YETILMEZSOY, K., SALARI, M., HEIDARINEJAD, Z., YOUSEFI, M., SILLANPÄÄ, M., 2020. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 299, 112154.
  • DUDEK, S., KOŁODYŃSKA, D., 2022. Arsenate removal on the iron oxide ion exchanger modified with neodymium(III) ions. J. Environ. Manage. 307, 114551.
  • DUDEK, S., KOŁODYŃSKA, D., 2021. Arsenic(V) removal on the lanthanum-modified ion exchanger with quaternary ammonium groups based on iron oxide. J. Mol. Liq. 347, 117985.
  • DUDEK, S., KOŁODYŃSKA, D., 2020. Enhanced arsenic(V) removal on an iron-based sorbent modified by lanthanum(III). Materials. 13, 2553.
  • DUTTA, P.K., RAY, A.K., SHARMA, V.K., MILLERO, F.J., 2004. Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci. 278, 270–275.
  • ELWAKEEL, K.Z., GUIBAL, E., 2015. Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydr. Polym. 134, 190–204.
  • GUO, X., WANG, J., 2019. A general kinetic model for adsorption: theoretical analysis and modeling. J. Mol. Liq. 288, 111100.
  • GUPTA, K., GHOSH, U.C., 2009. Arsenic removal using hydrous nanostructure iron(III)–titanium(IV) binary mixed oxide from aqueous solution. J. Hazard. Mater. 161, 884–892.
  • HAO, L., LIU, M., WANG, N., LI, G., 2018. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 8, 39545–39560.
  • HE, Z., TIAN, S., NING, P., 2012. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. J. Rare Earths 30, 563–572.
  • HU, Q., CHEN, N., FENG, C., HU, W.W., 2015. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Appl. Surf. Sci. 347, 1–9.
  • HUBBE, M.A., AZIZIAN, S., DOUVEN, S., 2019. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioRes. 14, 7582-7626.
  • ISSA, N.B., RAJAKOVIĆ-OGNJANOVIĆ, V.N., MARINKOVIĆ, A.D., RAJAKOVIĆ, L. V., 2011. Separation and determination of arsenic species in water by selective exchange and hybrid resins. Anal. Chim. Acta 706, 191–198.
  • JIAO, Y., HAN, D., LU, Y., RONG, Y., FANG, L., LIU, Y., HAN, R., 2017. Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode. Desalin. Water Treat. 77, 247–255.
  • KHAN, M.A., ALQADAMI, A.A., WABAIDUR, S.M., SIDDIQUI, M.R., JEON, B.H., ALSHAREEF, S.A., ALOTHMAN, Z.A., HAMEDELNIEL, A.E., 2020. Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water. J. Hazard. Mater. 400, 123247.
  • KOMNITSAS, K., ZAHARAKI, D., BARTZAS, G., ALEVIZOS, G., 2017. Adsorption of scandium and neodymium on biochar derived after low-temperature pyrolysis of sawdust. Minerals 7, 1–18.
  • LI, Z., QU, J., LI, H., LIM, T.C., LIU, C., 2011. Effect of cerium valence on As(V) adsorption by cerium-doped titanium dioxide adsorbents. Chem. Eng. J. 175, 207–212.
  • LIANG, S., WANG, H., LI, Y., QIN, H., LUO, Z., HUANG, B., ZHAO, X., ZHAO, C., CHEN, L., 2020. Rare-earth based nanomaterials and their composites as electrode materials for high performance supercapacitors: A review. Sustain. Energy Fuels 4, 3825–3847.
  • LIANG, T., LI, L., ZHU, C., LIU, X., LI, H., SU, Q., YE, J., GENG, B., TIAN, Y., SARDAR, M.F., HUANG, X., LI, F., 2020. Adsorption of As(V) by the novel and efficient adsorbent cerium-manganese modified biochar. Water 12, 2720.
  • LINGAMDINNE, L.P., KODURU, J.R., CHANG, Y.Y., KANG, S.H., YANG, J.K., 2019. Facile synthesis of flowered mesoporous graphene oxide-lanthanum fluoride nanocomposite for adsorptive removal of arsenic. J. Mol. Liq. 279, 32–42.
  • LINH, N.L.M., HOANG VAN, D., DUONG, T., TINH, M.X., KHIEU, D.Q., 2019. Adsorption of arsenate from aqueous solution onto modified Vietnamese bentonite. Adv. Mater. Sci. Eng. 2019, 2710926.
  • MAJI, S., GHOSH, AYAN, GUPTA, K., GHOSH, ABIR, GHORAI, U., SANTRA, A., SASIKUMAR, P., GHOSH, U.C., 2018. Efficiency evaluation of arsenic(III) adsorption of novel graphene oxide@iron-aluminium oxide composite for the contaminated water purification. Sep. Purif. Technol. 197, 388–400.
  • MINO, L., NEGRI, C., SANTALUCIA, R., CERRATO, G., SPOTO, G., MARTRA, G., 2020. Morphology, surface structure and water adsorption properties of TiO2 nanoparticles: A comparison of different commercial samples. Molecules 25, 4605.
  • MUTHU PRABHU, S., CHUAICHAM, C., SASAKI, K., 2018. A mechanistic approach for the aynthesis of carboxylate-rich carbonaceous biomass-doped lanthanum-oxalate nanocomplex for arsenate adsorption. ACS Sustain. Chem. Eng. 6, 6052–6063.
  • MUTHUSELVI, M., JEYASUBRAMANIAN, K., HIKKU, G.S., MUTHUSELVAN, M., ESWARAN, M., SENTHIL KUMAR, N., PONNUSAMY, V.K., 2021. Rare earth metal oxide-doped reduced graphene-oxide nanocomposite as binder-free hybrid electrode material for supercapacitor application. Int. J. Energy Res. 45, 8255–8266.
  • NABI, D., ASLAM, I., QAZI, I.A., 2009. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci. 21, 402–408.
  • PADUNGTHON, S., GERMAN, M., WIRIYATHAMCHAROEN, S., SENGUPTA, A.K., 2015. Polymeric anion exchanger supported hydrated Zr(IV) oxide nanoparticles: A reusable hybrid sorbent for selective trace arsenic removal. React. Funct. Polym. 93, 84–94.
  • PENG, X., LUAN, Z., DING, J., DI, Z., LI, Y., TIAN, B., 2005. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 59, 399–403.
  • PODGORSKI, J.E., EQANI, S.A.M.A.S., KHANAM, T., ULLAH, R., SHEN, H., BERG, M., 2017. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. 3, 1700935.
  • RAMESH, A., HASEGAWA, H., MAKI, T., UEDA, K., 2007. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep. Purif. Technol. 56, 90–100.
  • RAVI, PANDEY, L.M., 2019. Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Appl. Clay Sci. 169, 102–111.
  • REID, M.S., HOY, K.S., SCHOFIELD, J.R.M., UPPAL, J.S., LIN, Y., LU, X., PENG, H., LE, X.C., 2020. Arsenic speciation analysis: A review with an emphasis on chromatographic separations. TrAC - Trends Anal. Chem. 123, 115770.
  • SHARMA, M., SINGH, J., HAZRA, S., BASU, S., 2019. Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths : Adsorption and kinetic studies. 145, 105–112.
  • SHI, Q., YAN, L., CHAN, T., JING, C., 2015. Arsenic adsorption on lanthanum-impregnated activated alumina: spectroscopic and DFT study. ACS Appl. Mater. Interfaces 7, 26735–26741.
  • SHIN, S.M., PARK, J.K., JUNG, S.M., 2015. Changes of aromatic CH and aliphatic CH in in-situ FT-IR spectra of bituminous coals in the thermoplastic range. ISIJ Int. 55, 1591–1598.
  • SIDDIQUI, S.I., CHAUDHRY, S.A., 2017. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Saf. Environ. Prot. 111, 592–626.
  • SIMONIN, J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254–263.
  • VALDÉS, O., MARICAN, A., MIRABAL-GALLARDO, Y., SANTOS, L.S., 2018. Selective and efficient arsenic recovery from water through quaternary amino-functionalized silica. Polymers. 10, 626.
  • VILTRES, H., ODIO, O.F., LARTUNDO-ROJAS, L., REGUERA, E., 2020. Degradation study of arsenic oxides under XPS measurements. Appl. Surf. Sci. 511, 145606.
  • WANG, Y., LIU, Y., GUO, T., LIU, H., LI, J., WANG, S., LI, X., WANG, X., JIA, Y., 2020. Lanthanum hydroxide: a highly efficient and selective adsorbent for arsenate removal from aqueous solution. Environ. Sci. Pollut. Res. 27, 42868–42880.
  • WANG, Y., SHI, W., YU, Y., CHEN, X., 2009. Synthesization characterization and properties of quaternary ammonium cationic cellulose. 3rd International Conference on Bioinformatics and Biomedical Engineering. 1-4.
  • XIAO, X., PENG, B., CAI, L., ZHANG, X., LIU, S., WANG, Y., 2018. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Sci. Rep. 8, 1–13.
  • XIONG, F., HWANG, B., JIANG, Z., JAMES, D., LU, H., MOORTGAT, J., 2021. Kinetic emission of shale gas in saline water: Insights from experimental observation of gas shale in canister desorption testing. Fuel 300, 121006.
  • XU, N., RATE, A.W., MORGAN, B., SAUNDERS, M., 2019. Micro- and nanoscale identification of rare earth element-mineral associations in an acidified dredge spoil and adjacent reduced sediments. ACS Earth Sp. Chem. 3, 51–61.
  • YANG, G., LIU, Y., SONG, S., 2015. Competitive adsorption of As(V) with co-existing ions on porous hematite in aqueous solutions. J. Environ. Chem. Eng. 3, 1497–1503.
  • YETILMEZSOY, K., ÖZÇIMEN, D., KOÇER, A.T., BAHRAMIAN, M., KIYAN, E., AKBIN, H.M., GONCALOĞLU, B.İ., 2020. Removal of anthraquinone dye via struvite: equilibria, kinetics, thermodynamics, fuzzy logic modeling. Int. J. Environ. Res. 14, 541–566.
  • YU, Y., YU, L., KOH, K.Y., WANG, C., CHEN, J.P., 2018. Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review. Crit. Rev. Environ. Sci. Technol. 48, 1127–1164.
  • YU, Y., ZHANG, C., YANG, L., PAUL CHEN, J., 2017. Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: material development and study of performance and mechanisms. Chem. Eng. J. 315, 630–638.
  • ZENG, H., ZHAI, L., QIAO, T., YU, Y., ZHANG, J., LI, D., 2020. Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals. Sci. Rep. 10, 1–12.
  • ZHANG, G., REN, Z., ZHANG, X., CHEN, J., 2013. Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 47, 4022–4031.
  • ZHANG, R., LEIVISKÄ, T., 2020. Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal. Chem. Eng. J. 385, 123967.
  • ZHANG, W., FU, J., ZHANG, G., ZHANG, X., 2014. Enhanced arsenate removal by novel Fe-La composite (hydr)oxides synthesized via coprecipitation. Chem. Eng. J. 251, 69–79.
  • ZHANG, W., NIU, X., CHEN, L., YUAN, F., ZHU, Y., 2016. Soot combustion over nanostructured ceria with different morphologies. Sci. Rep. 6, 1–10.
  • ZHOU, Z., LIU, Y., LIU, S., LIU, H., ZENG, G., TAN, X., YANG, C., DING, Y., YAN, Z. LI, CAI, X., 2017. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. Chem. Eng. J. 314, 223–231
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2b92e30-e4b5-49a4-9664-46155785a5cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.