PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical Downscaling of Global Climate Projections along the Egyptian Mediterranean coast

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The climatic parameters (surface air temperature, surface relative humidity, surface wind regime, and mean sea level pressure) are important in addressing adaptation/mitigation to climatic changes. In particular, the recent and future of these climatic parameters along the Egyptian Mediterranean Coast (EMC) were analyzed based on hourly real observed data (2007–2020) and hourly reanalysis (ERA5) database (1979–2020) together with daily GFDL (global climate model) mini-ensemble mean (2006–2100). Recent climatic studies in the study area have not given enough attention to the downscaling approach, underscoring the need to set up a statistical downscaling technique to better understand the forces that govern climatic change. Here, we analyze the current climatic and future scenarios for the parameters studied in a three-step process. The first step is to study the current weather variabilities in the short term (14 years) using the real observed data. The second step is to describe the long-term (42 years) current weather variabilities over the studied stations using a reanalysis ERA5 database after bias removal by comparing with the observations. The third step is to statistically downscale the GFDL mini-ensemble, which means describing the future projection along the study area up to 2100. The statistical downscale technique is built on the developed bias correction statistical model by matching cumulative distribution functions (CDF) of the mini-ensemble mean and observations during the overlapped period (2007–2020). The results show that ERA5 describes the efficiency of the weather characteristics of the five studied stations. This data, along with the EMC 2006–2020, displays a significant positive trend for surface air temperature and significant negative trends for surface wind speed, relative humidity, and sea level pressure. The GFDL mini-ensemble mean projection, up to 2100, has a significant bias with the studied weather parameters. This is partly due to the GFDL coarse resolution (2° × 2.5°). After removing the bias, the statistically downscaled simulations from the GFDL mini ensemble mean show that the study area’s climate will experience significant change, especially surface air temperature and relative humidity with a great range of uncertainties according to the scenario used and regional variations. Our results are the initial step in enhancing the understanding and development of statistical downscaling techniques to project future climate scenarios over EMC.
Czasopismo
Rocznik
Strony
Art. no. 66401
Opis fizyczny
Bibliogr. 60 poz., fot., rys., tab., wykr.
Twórcy
  • Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
  • College of Maritime Transport and Technology (CMTT), Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu-Qir, Alexandria, Egypt;
  • Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
Bibliografia
  • 1. Abdelwares, M., Lelieveld, J., Hadjinicolaou, P., Zittis, G., Wagdy, A., Haggag, M., 2019. Evaluation of a regional climate model for the eastern Nile basin: Terrestrial and atmospheric water balance. Atmosphere 10 (12). https://doi.org/10.3390/ATMOS10120736
  • 2. Agrawala, S., Moehner, A., Gagnon-Lebrun, F., Van Aalst, M., Smith, J., Hagenstad, M., El Raey, M., Conway, D., 2004. Development and Climate Change in Egypt. Focus on Coastal Resources and the Nile. International Nuclear Information System (INIS), 36 (1).
  • 3. Ahmad, I., Tang, D., Wang, T., Wang, M., Wagan, B., 2015. Precipitation trends over time using Mann-Kendall and Spearman’s Rho tests in the Swat River Basin, Pakistan. Adv. Meteorol. 431860, 15 pp. https://doi.org/10.1155/2015/431860
  • 4. Alcamo, J., Moreno, J.M., Novaky, B., Bindi, M., Corobov, R., Devoy, R.J.N, Giannakopoulos, C., Martin, E., Olesen, J.E., Shvidenko, A., 2007. Europe. [In:] Climate Change 2007: Impacts, adaptation, and vulnerability. Contribution by Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E. (Eds.), Cambridge University Press, Cambridge, UK, 541-580
  • 5. Alduchov, O.A., Eskridge, R.E., 1996. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. 35(4), 601-609. https://doi.org/10.2172/548871
  • 6. Alpert, P., Krichak, S.O., Shafir, H., Haim, D., Osetinsky, I., 2008. Climatic trends in extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Global and Planetary Change 63(2-3), 163-170. https://doi.org/10.1016/j.gloplacha.2008.03.003
  • 7. Anagnostou, E.N., Negri, A.J., Adler, R.F., 1999. Statistical Adjustment of Satellite Microwave Monthly Rainfall Estimates over Amazonia. J. Appl. Meteorol. 38, 1590-1598.
  • 8. Bawadekji, A., Tonbol, K., Ghazouani, N., Becheikh, N., Shaltout, M., 2022. Recent atmospheric changes and future projections along the Saudi Arabian Red Sea Coast. Sci. Rep. 12(1). https://doi.org/10.1038/s41598-021-04200-z
  • 9. Bucchignani, E., Mercogliano, P., Panitz, H.J., Montesarchio, M., 2018. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change Res. 9(1), 66-80. https://doi.org/10.1016/j.accre.2018.01.004
  • 10. Copernicus Climate Change Service (C3S), 2017. ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 23 July 2020. https://cds.climate.copernicus.eu/cdsapp#!/home
  • 11. De Vries, A.J., Tyrlis, E., Edry, D., Krichak, S.O., Steil, B., Lelieveld, J., 2013. Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. 118(13), 7087-7108. https://doi.org/10.1002/jgrd.50569
  • 12. Domroes, M., El-Tantawi, A., 2005. Recent temporal and spatial temperature changes in Egypt. Int. J. Climatol. 25(1), 51-63. https://doi.org/10.1002/joc.1114
  • 13. Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J., Cooke, W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T., Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate 25(19), 6646-6665. https://doi.org/10.1175/JCLI-D-11-00560.1
  • 14. Dunne, J.P., John, J.G., Shevliakova, S., Stouffer, R.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Sentman, L.T., Adcroft, A.J., Cooke, W., Dunne, K.A., Griffies, S.M., Hallberg, R.W., Harrison, M.J., Levy, H., Wittenberg, A.T., Phillips, P.J., Zadeh, N., 2013. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate 26(7), 2247-2267. https://doi.org/10.1175/JCLI-D-12-00150.1
  • 15. Egyptian Naval Forces, 1962. Theoretical of meteorology, Egyptian Navy Publication, Educational Authority, 125 pp.
  • 16. Elbessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2021. Dynamical downscaling of surface air temperature and wind field variabilities over the southeastern levantine basin and Mediterranean Sea. Climate 9(1). https://doi.org/10.3390/cli9100150
  • 17. Elbessa, M., Abdelrahman, S.M., Tonbol, K., Shaltout, M., 2022. Modeling the future scenarios for surface temperature and wind regime over the South-Eastern Levantine Basin, Egypt. Egyptian J. Aquatic Biol. Fish. 26(3), 541-564. https://doi.org/10.21608/ejabf.2022.244114
  • 18. El-Geziry, T.M., Elbessa, M., Tonbol, K.M., 2021. Climatology of Sea–Land Breezes Along the Southern Coast of the Levantine Basin. Pure Appl. Geophys. 178(5), 1927-1941. https://doi.org/10.1007/s00024-021-02726-x
  • 19. Elsharkawy, M.S., El-Geziry, T.M., El-Din, S.H.S., 2016. General Characteristics of Surface Waves off Port Said, Egypt. IOSR J. Environ. Sci. Toxicol. Food Tech. 10(08).
  • 20. Essa, K.S.M., Mubarak, F., 2006. Survey and Assessment of Wind-Speed and Wind-power in Egypt, Including Air Density Variation. Wind Engineering 30(2), 95-106. https://doi.org/10.1260/030952406778055081109-115
  • 21. Griffies, S.M., Winton, M., Donner, L.J., Horowitz, L.W., Downes, S.M., Farneti, R., Gnanadesikan, A., Hurlin, W.J., Lee, H.C., Liang, Z., Palter, J.B., Samuels, B.L., Wittenberg, A.T., Wyman, B.L., Yin, J., Zadeh, N., 2011. The GFDL CM3 coupled climate model: Characteristics of ocean and sea ice simulations. J. Climate, 24(13), 3520-3544. https://doi.org/10.1175/2011JCLI3964.1
  • 22. Haggag, M., El-Badry, H., 2013. Mesoscale Numerical Study of Quasi-Stationary Convective System over Jeddah in November 2009. Atmos. Climate Sci. 03(01), 73-86. https://doi.org/10.4236/acs.2013.31010
  • 23. Hamed, A.A., 1979. Atmospheric Circulation Features Over the Southeastern Part of the Mediterranean Sea in Relation with Weather Conditions and Wind Waves at Alexandria. M.Sc. Thesis, Alexandria University, Egypt.
  • 24. Hamed, A.A., 1983. Atmospheric Circulation over the Southeastern Part of the Mediterranean Sea in Relation with Weather Conditions and Wind Waves Along the Egyptian Coast. Ph.D. Thesis, Alexandria University, Egypt.
  • 25. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N., 2020. ERA5 hourly data on single levels from 1979 to the present. Copernicus Climate ChangeService (C3S) Climate Data Store (CDS) (accessed on 09-01-2021). https://doi.org/10.24381/CDs.adbb2d47.
  • 26. Hausfather, Z., Peters, G., 2020. Emissions – the “business as usual” story is misleading. Nature 577 (2020), 618-620. https://doi.org/10.1038/d41586-020-00177-3
  • 27. IPCC, 2014. Climate change 2014: impacts, adaptation, and vulnerability. Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, Pt. A, Cambridge University Press, New York.
  • 28. IPCC, 2019. Special Report – Global Warming of 1.5∘C. Report of the Intergovernmental Panel on Global Warming. https://www.ipcc.ch/sr15/
  • 29. IPCC, 2022. Strengthening and Implementing the Global Response. [In:] Global Warming of 1.5∘C: IPCC Special Report on Impacts of Global Warming of 1.5∘C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press, 313-444. https://doi.org/10.1017/9781009157940.006
  • 30. IPCC, 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Geneva, Switzerland, 35-115. https://doi.org/10.59327/IPCC/AR6-9789291691647
  • 31. Kautz, L.A., Martius, O., Pfahl, S., Pinto, J.G., Ramos, A.M., Sousa, P.M., Woollings, T., 2022. Atmospheric blocking and weather extremes over the Euro-Atlantic sector - A review. Weather and Clim. Dynam. 3(1), 305-336. https://doi.org/10.5194/wcd-3-305-2022
  • 32. Kendall M.G., 1975. Rank Correlation Methods. 4th edn., Charles Griffin, London, UK. Krichak, S.O., Alpert, P., Bassat, K., Kunin, P., 2007. The surface climatology of the eastern Mediterranean region obtained in a three-member ensemble climate change simulation experiment. Adv. Geosci. 12, 67-80. https://doi.org/10.5194/adgeo-12-67-2007
  • 33. Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., Zittis, G., 2016. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change 137(1-2), 245-260. https://doi.org/10.1007/s10584-016-1665-6
  • 34. Liljegren, J.C., Carhart, R.A., Lawday, P., Tschopp, S., Sharp, R., 2008. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 5(10), 645-655. https://doi.org/10.1080/15459620802310770
  • 35. Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P.M., Krichak, S.O., Jansà, A., Maheras, P., Sanna, A., Trigo, I.F., Trigo, R., 2006. Chapter 6 Cyclones in the Mediterranean region: Climatology and effects on the environment. [In:] Developments in Earth and Environmental Sciences, Vol. 4, 325-372. https://doi.org/10.1016/S1571-9197(06)80009-1
  • 36. Mahfouz, B.M.B., Osman, A.G.M., Saber, S.A., Kanhalaf-Allah, H.M.M., 2020. Assessment of weather and climate variability over the western harbor of Alexandria, Egypt. Egyptian J. Aquatic Biol. Fish. 24(5), 323-339. https://doi.org/10.21608/EJABF.2020.105861
  • 37. Mann H.B., 1945. Non-parametric test against trend, Econometrica 13, 245-259. https://doi.org/10.2307/1907187.
  • 38. Meligy, M.M., 2000. Wave and Surge Forecasting Along the Egyptian Coast of the Mediterranean. M.Sc. Thesis, Arab Academy for Science and Technology and Maritime Transport, Alexandria Governorate, Egypt.
  • 39. Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747-756.
  • 40. Nastos, P.T., Zerefos, C.S., 2009. Spatial and temporal variability of consecutive dry and wet days in Greece. Atmos. Res. 94(4), 616-628. https://doi.org/10.1016/j.atmosres.2009.03.009
  • 41. Osman, M., Zittis, G., Haggag, M., Abdeldayem, A.W., Lelieveld, J., 2021. Optimizing Regional Climate Model Output for Hydro-Climate Applications in the Eastern Nile Basin. Earth Sys. Environ. 5(2), 185-200. https://doi.org/10.1007/s41748-021-00222-9
  • 42. Reichle, R.H., Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 31(19). https://doi.org/10.1029/2004GL020938
  • 43. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafaj, P., 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33-57.
  • 44. Saaroni, H., Bitan, A., Alpert, P., Ziv, B., 1996. Continental polar outbreaks into the Levant and eastern Mediterranean. Int. J. Climatol. 16, 1175-1191. https://doi.org/10.1002/(SICI)1097-0088(199610)16:10<1175:AID-JOC79>3.0.CO;2
  • 45. Saaroni, H., Ziv, B., Bitan, A., Alpert, P., 1998. Easterly wind storms over Israel. Theor. Appl. Climatol. 59(1-2), 61-77. https:/doi.org/10.1007/s007040050013
  • 46. Sabra, F.A., 1979. Wind, current and sea level variations over the continental shelf Alexandria coast. M.Sc. Thesis, Alexandria University, Egypt, 52-60.
  • 47. Sallam, G.A.H., Elsayed, E.A., 2015. Estimating the impact of air temperature and relative humidity change on the water quality of Lake Manzala, Egypt. J. Nat. Resour. Dev. 5., 76-87. https://doi.org/10.5027/jnrd.v5i0.11
  • 48. Shaltout, M., El Gindy, A., Omstedt, A., 2013. Recent climate trends and future scenarios in the Egyptian Mediterranean coast based on six global climate models. Geofizika J. 30(1), 19-41.
  • 49. Tuel, A., Eltahir, E.A.B., 2020. Why Is the Mediterranean a Climate Change Hot Spot? J. Climate, 33(14), 5829-5843. https://doi.org/10.1175/JCLI-D-19-0910.1
  • 50. Tonbol, K.M., El-Geziry, T.M. and Elbessa, M., 2018. Evaluation of Changes and Trends of Air Temperature within the Southern Levantine Basin. Weather, 73(2), 60-66. https://doi.org/10.1002/wea.3186
  • 51. UNESCO, 1979. Map of the world distribution of arid regions (Explanatory note). MAB Tech. Notes 7, Unesco, Paris, 54 pp.
  • 52. Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., Wang, G., 2020. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 8. https://doi.org/10.3389/feart.2020.00014
  • 53. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., 2011. The representative concentration pathways: an overview. Climatic Change, 109, 5-31.
  • 54. Vigaud, N., Vrac, M., Caballero, Y., 2013, Probabilistic downscaling of GCM scenarios over southern India. Int. J. Climatol. 33, 1248-1263. https://doi.org/10.1002/joc.3509
  • 55. Vaittinada Ayar, P., Vrac, M., Mailhot, A., 2021. Ensemble bias correction of climate simulations: preserving internal variability. Sci. Rep. 11, 3098. https://doi.org/10.1038/s41598-021-82715-1
  • 56. Williamson, D.F., Parker, R.A., Kendrick, J.S., 1989. The box plot: A simple visual method to interpret data. Ann. Intern. Med. 110(11), 916-921. https://doi.org/10.1059/0003-4819-110-11-916
  • 57. Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. 107(20), ACL 6-1-ACL 6-15. https://doi.org/10.1029/2001JD000659
  • 58. Yadav, R.K., 2021. Relationship between Azores High and Indian summer monsoon. NPJ Clim. Atmos. Sci. 4(1). https://doi.org/10.1038/s41612-021-00180-z
  • 59. Zecchetto, S., De Biasio, F., 2007. Sea surface winds over the Mediterranean basin from satellite data (2000–04): Meso- and local-scale features on annual and seasonal time scales. J. Appl. Meteorol. Clim. 46(6), 814-827. https://doi.org/10.1175/JAM2498.1
  • 60. Zerefos, C., Repapis, C., Giannakopoulos, C., Kapsomenakis, J., Papanikolaou, D., Papanikolaou, M., Poulos, S., Vrekoussis, M., Philandras, C., Tselioudis, G., Gerasopoulos, E., Douvis, K., Diakakis, M., Nastos, P., Hadjinicolaou, P., Xoplaki, E., Luterbacher, J., Zanis, P., Tzedakis, C., Repapis, K., 2011. The climate of the Eastern Mediterranean and Greece: past, present, and future. [In:] The Environmental, Economic and Social Impacts of Climate Change in Greece. Bank of Greece, Athens, 1-126.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2454f52-4ec5-415c-9d7d-525d3327b0ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.