PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen effect on the high-nickel surface steel properties during machining and wear with lubricants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the proposed research is to investigate the hydrogen effect on the high-nickel steel surface properties changing during machining and wear with participation of lubricant-cooling environments. Design/methodology/approach: The approach of the fracture mechanics and physicalchemical methods surface properties investigation was used to formulate the conclusions. Applying of lubricant-cooling (liquid, solid, gaseous) technological environments (LCTE) has change the morphology of chips and roughness of contact 23Ni1Mo3Ti steel surfaces depending on the experimentally fixed hydrogen concentrations (4.62…12.0 ppm). It correlates with both the roughness of the treated surface and the nature of the cutting products fragmentation: the maximum concentration of hydrogen - in the chips coincides with the minimum size of its defragmentation and reduction of the surface roughness. For nitrogen and oxygen, a similar relationship is traced poorly. Findings: On the basis of the fracture mechanics approaches it is confirmed, that in the conditions of the application of hydrogen containing (as chemical composition) (up to 12 ppm) and hydrogen accumulated (in nano container) (up to 600 ppm) LCTE, hydrogen enters the near crack initiation contact zone before fracture and taking part in changing structural material fracture mechanisms, improves its mashinning processes. Research limitations/implications: The results obtained on laboratory specimens should be tested during machining of real details made from high-nickel steel. Practical implications: The created technological approaches can be used in practice evaluation of mechanical properties and residual of modern gas turbine parts. Originality/value: It was shown, that hydrogen containing (in chemical composition) and hydrogen accumulated (in nano container) LCTE permits the hydrogen to enter in the near crack initiation contact zone before fracture and taking part in changing structural material fracture mechanisms.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Ivan Franko National University of Lviv, 50 Drahomanova str., 79005, Lviv, Ukraine
  • Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine, 5 Naukova str., 79060, Lviv, Ukraine
  • Taras Shevchenko National University of Lugansk, 1 Gogol Sq., 92703, Starobilsk, Ukraine
  • Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine, 5 Naukova str., 79060, Lviv, Ukraine
  • West Pomeranian University of Technology in Szczecin, 19 Piastow Av., 70-310, Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, 19 Piastow Av., 70-310, Szczecin, Poland
  • Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine, 5 Naukova str., 79060, Lviv, Ukraine
Bibliografia
  • [1] O.A.Balitskii, V.O.Kolesnikov, A.I. Balitskii, Wear resistance of hydrogenated high nitrogen steel at dry and solid state lubricants assistant friction, Archives of Materials Science and Engineering 98/2 (2019) 57-67. DOI: https://doi.org/ 10.5604/01.3001.0013.4607
  • [2] O.I. Balyts’kyi, V.O. Kolesnikov, P. Kawiak, Triboengineering properties of austenitic manganese steels and cast irons under the conditions of sliding friction, Materials Science 41/5 (2005) 624-630. DOI: https://doi.org/ 10.1007/s11003-006-0023-7
  • [3] O.I. Balyts’kyi, V.O. Kolesnikov, M.R. Havrylyuk, Influence of lubricating liquid on the formation of the products of cutting of 38KhN3MFA steel, Materials Science 54/5 (2019) 722-727. DOI: https://doi.org/10.1007/s11003-019-00238-7
  • [4] O.I. Balyts’kyi, V.O. Kolesnikov, Y. Eliasz, M.R. Havrylyuk, Specific features of the fracture of hydrogenated high-nitrogen manganese steels under conditions of rolling friction, Materials Science 50/4 (2015) 604-611. DOI: https://doi.org/10.1007/s11003- 015-9760-9
  • [5] V. Stupnytskyy, I. Hrytsay, Comprehensive analysis of the product’s operational properties formation considering machining technology, Archive of Mechanical Engineering 67/2 (2020) 149-167. DOI: https://doi.org/10.24425/ame.2020.131688
  • [6] J.L. Mihelich, A.R. Troiano, Delayed failure in a hydrogenated face-centred cubic alloy of nickel, Nature 197 (1963) 996-997. DOI: https://doi.org/10.1038/197996a0
  • [7] O.I. Balyts'kyi, O.O. Krokhmal'nyi, Pitting corrosion of 12Kh18AG18Sh steel in chloride solutions, Materials Science 35/3 (1999) 389-394. DOI: https://doi.org/10.1007/BF02355483
  • [8] O.I. Balyts’kyi, K.F. Abramek, T. Shtoeck, T. Osipo- wicz, Diagnostics of degradation of the lock of a sealing ring according to the loss of working gases of an internal combustion engine, Materials Science 50/1 (2014) 156-159. DOI: https://doi.org/10.1007/s11003- 014-9704-9
  • [9] O.I. Balyts’kyi, V.M. Mochylski, L.M. Ivaskievich, Evaluation of the influence of hydrogen on mechanical charakteristics of complexly alloyed nickel alloys, Materials Science 51/4 (2016) 538-547. DOI: https://doi.org/10.1007/s11003-016-9873-9
  • [10] I. Dmytrakh, Corrosion fracture of structural metallic materials: effect of electrochemical conditions in crack, Strain. International Journal for Experimental Mechanics 47/2 (2011) 427-435. DOI: https://doi.org/10.1111/j.1475-1305.2010.00784.x
  • [11] I.M. Dmytrakh, R.L. Leshchak, A.M. Syrotyuk, R.A. Barna, Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel, International Journal of Hydrogen Energy 42 (2017) 6401-6408. DOI: https://doi.org/10.1016Zj.ijhydene.2016.11.1937
  • [12] R. Akid, I.M. Dmytrakh, J. Gonzalez-Sanchez, Fatigue damage accumulation: the role of corrosion on the early stages of crack development, Corrosion Engineering Science and Technology 41/4 (2006) 328-335. DOI: https://doi.org/10.1179/174327806X139108
  • [13] M.A. Benghalia, C. Fares, A. Khadraoui, M. Hadj Meliani, I.B. Obot, A. Sorrour, I.M. Dmytrakh, Z. Azari, Performance evaluation of a natural and synthetic compound as corrosion inhibitors of API 5L X52 steel in hydrochloric acid media, Moroccan Journal of Chemistry 60/1 (2018) 51-61. DOI: https://doi.org/10.48317/IMIST.PRSM/morjchem- v6i1.8608
  • [14] H. Moustabchir, Z. Azari, S.Hariri, I. Dmytrakh, Experimental and comuted stress distribution ahead of a notch in a pressue vessel: Application of T-stress conception, Computational Materials 58 (2012) 59-66. DOI: https://doi.org/10.1016/j.commatsci.2012.01.029
  • [15] Ya.M Gladkii, S.S. Bys, V.V. Milko, Hydrogen - diffusion mechanical treatment of structural materials, Materials Science 55/6 (2020) 846-853. DOI: https://doi.org/10.1007/s11003-020-00378-1
  • [16] A.A. Balitskii, V.A. Kolesnikov, O.B. Vus, Tribo- technical properties of nitrogen manganese steels under rolling friction at addition of (GaSe)xIn1-x powders into contact zone, Metallofizika i Noveishie Tekhnologii 32/5 (2010) 685-695. DOI: https://doi.org/10.15407/mfint
  • [17] L. Simon, C.A.M. Moraes, R.C.E. Modolo, M. Vargas, D. Calheiro, F.A. Brehm, Recycling of contaminated metallic chip based on eco-efficiency and eco- effectiveness approaches, Journal of Cleaner Production 153 (2017) 417-424. DOI: https://doi.org/10.1016/i.jclepro.2016.11.058
  • [18] L.E. Rovin, T.M. Zayac, O.M. Valickaya, Recycling of ferrous metal shavings, Casting and Metallurgy 89/4 (2017) 94-101. DOI: https://doi.org /10.21122/1683- 6065-2017-4-94-101
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a1a7a0f9-bf18-478b-8fd8-948ae1448ba0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.