PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pyrite type on the electrochemistry of chalcopyrite/pyrite interactions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pyrite is the most common sulphide gangue mineral occurring in base metal sulphide ores around the world. Pyrite is known to galvanically interact with valuable minerals such as chalcopyrite, altering their electrochemical and flotation behaviour. Different types of pyrite are known to vary in texture, chemical composition and electrochemical activity. However, the effect that these differences have on the degree of pyrite interaction with chalcopyrite are not well studied. This work examines two distinct types of pyrite from different deposits that have a similar chemical composition, but vary greatly in texture. It investigates the way in which these pyrites interact with chalcopyrite surfaces, affecting both its electrochemical behaviour and floatability. It was found that the Renison pyrite was characterised by a much higher level of surface activity than the Huanzala pyrite. This was attributed to the elevated levels of arsenic within the mineral’s crystalline matrix.
Słowa kluczowe
Rocznik
Strony
1117--1129
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • CSIRO, 3/42 Webster Street, Malvern East, 3145 Malvern East, Australia
autor
  • CSIRO, 3/42 Webster Street, Malvern East, 3145 Malvern East, Australia
  • CSIRO, 3/42 Webster Street, Malvern East, 3145 Malvern East, Australia
Bibliografia
  • ABRAITIS, P.K., PATTRICK, R.A.D., VAUGHAN, D.J., 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74(1–4), 41-59.
  • CHEN, G., YANG, H., and LI, H., 2016. In situ characterization of natural pyrite bioleaching using electrochemical noise technique. International Journal of Minerals, Metallurgy, and Materials, 23(2): 117-126.
  • CRUZ, R., BERTRAND, V., MONROY, M., GONZÁLEZ, I., 2001. Effect of sulfide impurities on the reactivity of pyrite and pyritic concentrates: a multi-tool approach. Applied Geochemistry, 16(7), 803-819.
  • DEDITIUS, A.P., UTSUNOMIYA, S., RENOCK, D., EWING, R.C., RAMANA, C.V., BECKER, U., KESLER, S.E., 2008. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72(12), 2919-2933.
  • DERJAGUIN, B.V., LANDAU, L., 1941. Theory of stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solution of electrolytes. Acta Physiochim, 14, 633 - 662.
  • DOYLE, F.M., MIRZA, A.H., 1996. Electrochemical oxidation of pyrite samples with known composition and electrical properties, In Electrochemical Proceedings pp. 203 - 214.
  • EKMEKÇI, Z., DEMIREL, H., 1997. Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. International Journal of Mineral Processing, 52(1), 31-48.
  • FLEET, M.E., MUMIN, A.H., 1997. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182-193.
  • GARDNER, J.R., WOODS, R., 1979. An electrochemical investigation of the natural flotability of chalcopyrite. International Journal of Mineral Processing, 6(1), 1-16.
  • GUY, P.G., 1992. The development of laboratory batch flotation equipment and practice at CSIRO Australia, In AusIMM Annual Conference. AusIMM, Melbourrne, Australia, pp. 75 - 79.
  • GUY, P.G., TRAHAR, W.J., 1985. The Effects of Oxidation and Minreal Interaction on Sulfide Flotaiton, In Flotation of Sulfide Minerals, ed. Forrsberg, E. Elsevier, pp. 63 - 71.
  • HAMILTON, I.C., WOODS, R., 1981. An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 118, 327-343.
  • HEYES, G.W., TRAHAR, W.J., 1979. Oxidation-Reduction effects in the flotation of chalcocite and cuprite. International Journal of Mineral Processing, 6(3), 229-252.
  • HEYES, G.W., TRAHAR, W.J., 1984. The flotation of pyrite and pyrrhotite in the absence of conventional collectors, In Electrochemistry in Minerals and Metal Processing, eds. Richardson, P.E., Srinivasan, S., Woods, R., pp. 219-232.
  • HU, Y., SUN, W., WANG, D., 2009. Chapter 7 - Corrosive Electrochemistry of Oxidation-Reduction of Sulfide Mienrals, In Electrochemistry of Flotation of Sulphide Minerals. Springer-Verlag, Berlin Heidelberg, pp. 167 - 200.
  • LUTTRELL, G.H., YOON, R.-H., 1984. The collectorless flotation of chalcopyrite ores using sodium sulfide. International Journal of Mineral Processing, 13(4), 271-283.
  • MENDIRATTA, N.K., 2000. Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption, In Materials Engineering and Science. Virginia Polytechnic Institute.
  • MURAKAMI, R., YAMANAKA, K., GOMI, A., FUJII, N., 2009. Exploration of the Huanzalà mine, Republic of Perù -The discovery of a deep mineralized zone. Shigen-Chishitsu 59(2), 91-106.
  • OWUSU, C., ADDAI-MENSAH, J., FORNASIERO, D., ZANIN, M., 2013. Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Advanced Powder Technology, 24(4), 801-809.
  • OWUSU, C., BRITO E ABREU, S., SKINNER, W., ADDAI-MENSAH, J., ZANIN, M., 2014. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95.
  • RAYMOND, O.L., 1996. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geology Reviews, 10(3), 231-250.
  • RICHARDSON, P.E., STOUT, J.V., PROCTOR, C.L., WALKER, G.W., 1984. Electrochemical flotation of sulfides: Chalcocite-ethylxanthate interactions. International Journal of Mineral Processing, 12(1–3), 73-93.
  • TRAHAR, W.J., SENIOR, G.D., SHANNON, L.K., 1994. Interactions between sulphide minerals — the collectorless flotation of pyrite. International Journal of Mineral Processing, 40(3), 287-321.
  • VERWEY, E.J.W., OVERBEEK, J.T.G., 1948. Theory of Stability of Lyophobic Solids. Elsevier, Amsterdam.
  • WOODS, R., 2003. Electrochemical potential controlling flotation. International Journal of Mineral Processing, 72(1), 151-162.
  • XIAN, Y., WANG, Y., WEN, S., NIE, Q., DENG, J., 2015. Floatability and oxidation of pyrite with different spatial symmetry. Minerals Engineering, 72, 94-100.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a03a2224-76bc-4195-9e11-2bdf15937d76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.