PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and characterization of silicone rubber socket liners modified by nanoparticles additives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The upper part of the prosthesis is called a socket, which contacts the amputated part. While wearing the prosthesis, there are several problems that the patient may suffer from, such as shear force between the socket and amputated part, pressure on the bony prominences, sweating, and bacteria generation, all leading to skin problems and a bad smell. It makes the patient refuse to wear the prosthesis because it is uncomfortable. Therefore, the aim of this study was comfortable lining from silicone rubber which cross-links at room temperature, with properties corresponding to the needs of this application, such as stress distribution, moisture absorption, and antibacterial. Design/methodology/approach: In the current work, silicone rubber was selected with the addition of nano-fillers (ZnO, Mg(OH)2, and Chitosan). Mechanical and physical properties were studied (tensile strength, tear strength, hardness, water absorption, porosity, and antibacterial). Findings: Chitosan showed the highest effect on the mechanical properties of silicon, as it achieved the highest value of tensile strength of 2.2 MPa elongation of 572%, tear strength 13.9 kN/m, and shore A hardness of 33.3. While the highest value of the modulus, 0.636 MPa was achieved by adding ZnO. The results also showed an increase in the water absorption and the porosity, which were the highest values at 1.6 % and 0.24%, respectively with the addition of Mg(OH)2. The samples showed a clear resistance to preventing the microorganism’s growth. Research limitations/implications: Manufactured linings require additional improvement in mechanical properties by mixing more than one type of additives mentioned in the research. Thus, physical and biological properties can be obtained simultaneously with mechanical properties. Practical implications: The above results qualify the silicone rubber composites for use as a socket liner due to their flexibility and ability to absorb water in addition to their resistance and prevent the growth of fungi and bacteria. Originality/value: The method of preparation and properties of the lining material and additives qualify it for such applications as physical and biological properties.
Rocznik
Strony
21--30
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Department of Prosthetics and Orthotics Engineering, College of Engineering, Kerbala University, Iraq
Bibliografia
  • [1] N.L. Dudek, M.B. Marks, S.C. Marshall, J.P. Chardon, Dermatologic Conditions Associated with the Use of a Lower Extremity Prosthesis, Archives of Physical Medicine and Rehabilitation 86/4 (2005) 659-663. DOI: https://doi.org/10.1016/j.apmr.2004.09.003
  • [2] S.G. Millstein, H. Heger, G.A. Hunter, Prosthetic Use in Adult Upper Limb Amputees: A Comparison of the Body-Powered and Electrically Powered Prostheses, Prosthetics and Orthotics International 10/1 (1986) 27- 34. DOI: https://doi.org/10.3109/03093648609103076
  • [3] J. Xie, X. Liu, J. Tang, X. Li, W. Li, Study on Friction Behavior at the Interface Between Prosthetic Socket and Liner, Acta of Bioengineering and Biomechanics 23/1 (2021) 83-93. DOI: https://doi.org/10.37190/ABB-01751-2020-04
  • [4] H.E.J. Meulenbelt, J.H.B. Geertzen, P.U. Dijkstra, M.F. Jonkman, Skin Problems in Lower Limb Amputees: An Overview by Case Reports, Journal of the European Academy of Dermatology and Venereology 21/2 (2007) 147-155. DOI: https://doi.org/10.1111/j.1468-3083.2006.01936.x
  • [5] G.K. Klute, B.C. Glaister, J.S. Berge, Prosthetic Liners for Lower Limb Amputees: A review of the literature. Prosthetics and Orthotics International 34/2 (2010) 146-153. DOI: https://doi.org/10.3109/03093641003645528
  • [6] L. Paterno, M. Ibrahimi, E. Gruppioni, A. Menciassi, L. Ricotti, Sockets for Limb Prostheses: A Review of Existing Technologies and Open Challenges, IEEE Transactions on Biomedical Engineering 65/9 (2018) 1996-2010. DOI: https://doi.org/10.1109/TBME.2017.2775100
  • [7] M. Marino, S. Pattni, M. Greenberg, A. Miller, E. Hocker, S. Ritter, K. Mehta, Access to Prosthetic Devices in Developing Countries: Pathways and challenges, Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, USA, 2015, 45-51. DOI: https://doi.org/10.1109/GHTC.2015.7343953
  • [8] H. Gu, H. Luan, Z. Mo, I. Song, Y. Fan, Biological and Physical Properties of a Modification Silicone Liner, IOP Conference Series: Materials Science and Engineering 774 (2020) 012110. DOI https://doi.org/10.1088/1757-899X/774/1/012110
  • [9] C. Quintero-Quiroz, V. Zasúlich Pérez, Materials for Lower Limb Prosthetic and Orthotic Interfaces and Sockets: Evolution and associated skin problems, Revista de la Facultad de Medicina 67/1 (2019) 117-125. DOI: https://doi.org/10.15446/revfacmed.v67n1.64470
  • [10] L.A. Dobrzański, A.J. Nowak, W. Błażejewski, R. Rybczyński, Non-standard test methods for long fibrous reinforced composite materials, Archives of Materials Science and Engineering 47/1 (2011) 5-10.
  • [11] M. Gray, J.M. Black, M.M. Baharestani, D.Z. Bliss, J.C. Colwell, M. Goldberg, K.L. Kennedy-Evans, S. Logan, C.R. Ratliff, Moisture-associated skin damage: overview and pathophysiology, Journal of Wound, Ostomy, and Continence Nursing 38/3 (2011) 233-241. DOI https://doi.org/10.1097/won.0b013e318215f798
  • [12] R.J. Williams, E.D. Washington, M. Miodownik, C. Holloway, The Effect of Liner Design and Materials Selection on Prosthesis Interface Heat Dissipation, Prosthetics and Orthotics International 42/3 (2018) 275- 279. DOI: https://doi.org/10.1177/0309364617729923
  • [13] J. Żmudzki, M. Burzyński, G. Chladek, C. Krawczyk, CAD/CAM silicone auricular prosthesis with thermoformed stiffening insert, Archives of Materials Science and Engineering 83/1 (2017) 30-35. DOI: https://doi.org/10.5604/01.3001.0009.7539
  • [14] A.J. Nowak, L.A. Dobrzański, Geometrical structure investigation of the surface of internal oesophagus prosthesis, Archives of Materials Science and Engineering 83/2 (2017) 79-85. DOI: https://doi.org/10.5604/01.3001.0009.9171
  • [15] A.G. Hatfield, J.D. Morrison, Polyurethane Gel Liner Usage in the Oxford Prosthetic Service, Prosthetics and Orthotics International 25/1 (2001) 41-46. DOI: https://doi.org/10.1080/03093640108726567
  • [16] A. Shinde, I. Siva, Y. Munde, V. Deore, M.T.H. Sultan, A.U.M. Shah, F. Mustapha, Testing of Silicon Rubber/ Montmorillonite Nanocomposite for Mechanical and Tribological Performance, Nanomaterials 11/11 (2021) 3050. DOI: https://doi.org/10.3390/nano11113050
  • [17] S. Łagan, A. Liber-Kneć, The Determination of Mechanical Properties of Prosthetic Liners Through Experimental and Constitutive Modeling Approaches, Technical Transactions 115/3 (2018) 197-209. DOI: https://doi.org/10.4467/2353737XCT.18.048.8343
  • [18] K. Hagberg, R.J. Branemark, Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems, Prosthetics and Orthotics International 25/3 (2001) 186-194. DOI: https://doi.org/10.1080/03093640108726601
  • [19] M. Amin, M. Akbar, S. Amin, Hydrophobicity of silicone rubber used for outdoor insulation (an overview), Reviews on Advanced Materials Science 16/1-2 (2007) 10-26.
  • [20] I. Kalamarz, G. Chladek, M. Pokój, D. Łukowiec, C. Krawczyk, R. Stencel, E. Jabłońska-Stencel, The properties of experimental silicones reinforced with silica fillers for dentistry, Archives of Materials Science and Engineering 81/1 (2016) 22-29. DOI: https://doi.org/10.5604/18972764.1229622
  • [21] A. Ghanbari-Siahkali, S. Mitra, P. Kingshott, K. Almdal, C. Bloch, H.K. Rehmeier, Investigation of the Hydrothermal Stability of Cross-Linked Liquid Silicone Rubber (LSR), Polymer Degradation Stability 90/3 (2005) 471-480. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.04.016
  • [22] R.S. Maxwell, R. Cohenour, W. Sung, D. Solyom, M. Patel, The effects of 𝛾𝛾-radiation on the thermal, me-chanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber, Polymer Degradation and Stability 80/3 (2003) 443-450. DOI: https://doi.org/10.1016/S0141-3910(03)00028-4
  • [23] A.A. Al-Dharrab, S.B. Tayel, M.H. Abodaya, The Effect of Different Storage Conditions on the Physical Properties of Pigmented Medical Grade I Silicone Maxillofacial Material, International Scholarly Research Notices 2013 (2013) 58205. DOI: https://doi.org/10.1155/2013/582051
  • [24] J. Jiang, J. Pi, J. Cai, The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications, Bioinorganic Chemistry and Applications 2018 (2018) 1062562. DOI: https://doi.org/10.1155/2018/1062562
  • [25] J.A. Ruszkiewicz, A. Pinkas, B. Ferrer, T.V. Peres, A. Tsatsakis, M. Aschner, Neurotoxic Effect of Active Ingredients in Sunscreen Products, A Contemporary Review, Toxicology Reports 4 (2017) 245-259. DOI: https://doi.org/10.1016/j.toxrep.2017.05.006
  • [26] Z.Y. Zhang, H.M. Xiong, Photoluminescent ZnO Nanoparticles and Their Biological Applications, Materials 8/6 (2015) 3101-3127. DOI: https://doi.org/10.3390/ma8063101
  • [27] S. Kim, S.Y. Lee, H.J. Cho, Doxorubicin-Wrapped Zinc Oxide Nanoclusters for the Therapy of Colorectal Adenocarcinoma, Nanomaterials 7/11 (2017) 354. DOI: https://doi.org/10.3390/nano7110354
  • [28] H.M. Xiong, ZnO Nanoparticles Applied to Bioimaging and Drug Delivery, Advanced Materials 25/37 (2013) 5329-5335. DOI: https://doi.org/10.1002/adma.201301732
  • [29] P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications, Drug Discovery Today 22/12 (2017) 1825-1834. DOI: https://doi.org/10.1016/j.drudis.2017.08.006
  • [30] S.J. Enna, D.B. Bylund, Elsevier Science (Firm), xPharm, The Comprehensive Pharmacology, Elsevier, Amsterdam, 2008.
  • [31] Y. Zhu, Y. Tang, Z. Ruan, Y. Dai, Z. Li, Z. Lin, S. Zhao, L. Cheng, B. Sun, M. Zeng, J. Zhu, R. Zhao, B. Lu, H. Long, Mg(OH)2 Nanoparticles Enhance the Antibacterial Activities of Macrophages by Activating the Reactive Oxygen Species, Journal of Biomedical Materials Research: A 109/11 (2021) 2369-2380. DOI: https://doi.org/10.1002/jbm.a.37219
  • [32] K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, W.H. Park, Electrospinning of Polysaccharides for Regenerative Medicine, Advanced Drug Delivery Reviews 61/12 (2009) 1020-1032. DOI: https://doi.org/10.1016/j.addr.2009.07.006
  • [33] F. Croisier, C. Jérôme, Chitosan-Based Biomaterials for Tissue Engineering, European Polymer Journal 49/4 (2013) 780-792. DOI: https://doi.org/10.1016/j.eurpolymj.2012.12.009
  • [34] R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, V. Préat, Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, in: R. Jayakumar, M. Prabaharan, R. Muzzarelli (eds), Chitosan for Biomaterials II. Advances in Polymer Science, vol. 244, Springer, Berlin, Heidelberg, 2011, 19-44. DOI: https://doi.org/10.1007/12_2011_137
  • [35] H.M. Ibrahim, E.M.R. El-Zairy, Chitosan as a Biomaterial - Structure, Properties, and Electrospun Nanofibers, in: V. Bobbarala (ed.), Concepts, Compounds and the Alternatives of Antibacterials, IntechOpen, Rijeka, 2015, 81-101. DOI: https://doi.org/10.5772/61300
  • [36] I. Aranaz, R. Harris, A. Heras, Chitosan Amphiphilic Derivatives. Chemistry and Applications, Current Organic Chemistry 14/3 (2010) 308-330. DOI: https://doi.org/10.2174/138527210790231919
  • [37] I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed, A. Heras, Functional Characterization of Chitin and Chitosan, Current Chemical Biology 3/2 (2009) 203-230. DOI: https://doi.org/10.2174/2212796810903020203
  • [38] R. Jayakumar, M. Prabaharan, R.L. Reis, J.F. Mano, Graft Copolymerized Chitosan-Present Status and Applications, Carbohydrate Polymers 62/2 (2005) 142-158. DOI: https://doi.org/10.1016/j.carbpol.2005.07.017
  • [39] ASTM D638:Standard Test Method for Tensile Properties of Plastics, Type IV, 2022.
  • [40] ASTM D624-00: Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomer, 2007.
  • [41] ASTM D2240: Standard Test Method for Rubber Property - Durometer Hardness, 2021.
  • [42] ASTM D570: Standard Test Method for Water Absorption of Plastics, 2018.
  • [43] N.H. Aysa, Evaluating of mechanical properties of (silicone/arabic gum/fish hask) composites used as pressure garment prosthetics, periodicals of engineering and Natural Sciences 7/3 (2019) 1202-1208. DOI: http://dx.doi.org/10.21533/pen.v7i3.679.g390
  • [44] L. Feng, S. Li, S. Feng, Preparation and Characterization of Silicone Rubber with High Modulus via Tension Spring-Type Cross-linking, RSC Advances 7 (2017) 13130-13137. DOI: https://doi.org/10.1039/C7RA00293A
  • [45] M.J. Jweeg, A.K. Hassan, M.M. Almudhaffar, Experimental investigations and finite element modelling of a suggested prosthetic foot, Archives of Materials Science and Engineering 115/1 (2022) 21-33. DOI: https://doi.org/10.5604/01.3001.0016.0675
  • [46] X. Yang, Q. Li, Z. Li, X. Xu, H. Liu, S. Shang, Z. Song, Preparation and Characterization of Room-Temperature- Vulcanized Silicone Rubber Using Acrylpimaric Acid- Modified Aminopropyltriethoxysilane as a Cross- Linking Agent, ACS Sustainable Chemistry and Engineering 7/5 (2019) 4964-4974. DOI: https://doi.org/10.1021/acssuschemeng.8b05597
  • [47] D.R. Paul, J.E. Mark, Fillers for Polysiloxane (“silicone”) elastomers, Progress in Polymer Science 35/7 (2010) 893-901. DOI: https://doi.org/10.1016/j.progpolymsci.2010.03.004
  • [48] C.M. Brick, K. Senoo, M. Mori, K. Ito, High Tear Strength Silicone Elastomers with Low Hardness and High Elongation, Proceedings of the 44th ISTC International SAMPE Technical Conference, Charleston, SC, 2012.
  • [49] T. Rihayat, A. Nurhanifa, C. Tezara, Enhancing the Mechanical and Water Absorption Properties of PLA/Chitosan Composites by the Incorporation of Zinc Oxide Nanoparticles, Proceeding Book of the 3rd International Conference on Multidisciplinary Research, Vol. 03, No. 2, 2020, 5-11.
  • [50] T. Rihayat, A. Suryani, Morphology properties of polyurethane/clay nanocomposites based on palm oil polyol paint, Advanced Materials Research 647 (2013) 701-704. DOI: https://doi.org/10.4028/www.scientific.net/AMR.647.701
  • [51] X. Pan, Y. Wang, Z. Chen, D. Pan, Y. Cheng, Z. Liu, Z. Lin, X. Guan, Investigation of Antibacterial Activity and Related Mechanism of a Series of Nano-Mg(OH)2, ACS Applied Materials and Interfaces 5/3 (2013) 1137- 1142. DOI: https://doi.org/10.1021/am302910q
  • [52] Z. Atai, M. Atai, J. Amini, N. Salehi, In vivo study of antifungal effects of low-molecular-weight chitosan against Candida albicans, Journal of Oral Science 59/3 (2017) 425-430. DOI: https://doi.org/10.2334/josnusd.16-0295
  • [1] N.L. Dudek, M.B. Marks, S.C. Marshall, J.P. Chardon, Dermatologic Conditions Associated with the Use of a Lower Extremity Prosthesis, Archives of Physical Medicine and Rehabilitation 86/4 (2005) 659-663. DOI: https://doi.org/10.1016/j.apmr.2004.09.003
  • [2] S.G. Millstein, H. Heger, G.A. Hunter, Prosthetic Use in Adult Upper Limb Amputees: A Comparison of the Body-Powered and Electrically Powered Prostheses, Prosthetics and Orthotics International 10/1 (1986) 27- 34. DOI: https://doi.org/10.3109/03093648609103076
  • [3] J. Xie, X. Liu, J. Tang, X. Li, W. Li, Study on Friction Behavior at the Interface Between Prosthetic Socket and Liner, Acta of Bioengineering and Biomechanics 23/1 (2021) 83-93. DOI: https://doi.org/10.37190/ABB-01751-2020-04
  • [4] H.E.J. Meulenbelt, J.H.B. Geertzen, P.U. Dijkstra, M.F. Jonkman, Skin Problems in Lower Limb Amputees: An Overview by Case Reports, Journal of the European Academy of Dermatology and Venereology 21/2 (2007) 147-155. DOI: https://doi.org/10.1111/j.1468-3083.2006.01936.x
  • [5] G.K. Klute, B.C. Glaister, J.S. Berge, Prosthetic Liners for Lower Limb Amputees: A review of the literature. Prosthetics and Orthotics International 34/2 (2010) 146-153. DOI: https://doi.org/10.3109/03093641003645528
  • [6] L. Paterno, M. Ibrahimi, E. Gruppioni, A. Menciassi, L. Ricotti, Sockets for Limb Prostheses: A Review of Existing Technologies and Open Challenges, IEEE Transactions on Biomedical Engineering 65/9 (2018) 1996-2010. DOI: https://doi.org/10.1109/TBME.2017.2775100
  • [7] M. Marino, S. Pattni, M. Greenberg, A. Miller, E. Hocker, S. Ritter, K. Mehta, Access to Prosthetic Devices in Developing Countries: Pathways and challenges, Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, USA, 2015, 45-51. DOI: https://doi.org/10.1109/GHTC.2015.7343953
  • [8] H. Gu, H. Luan, Z. Mo, I. Song, Y. Fan, Biological and Physical Properties of a Modification Silicone Liner, IOP Conference Series: Materials Science and Engineering 774 (2020) 012110. DOI https://doi.org/10.1088/1757-899X/774/1/012110
  • [9] C. Quintero-Quiroz, V. Zasúlich Pérez, Materials for Lower Limb Prosthetic and Orthotic Interfaces and Sockets: Evolution and associated skin problems, Revista de la Facultad de Medicina 67/1 (2019) 117-125. DOI: https://doi.org/10.15446/revfacmed.v67n1.64470
  • [10] L.A. Dobrzański, A.J. Nowak, W. Błażejewski, R. Rybczyński, Non-standard test methods for long fibrous reinforced composite materials, Archives of Materials Science and Engineering 47/1 (2011) 5-10.
  • [11] M. Gray, J.M. Black, M.M. Baharestani, D.Z. Bliss, J.C. Colwell, M. Goldberg, K.L. Kennedy-Evans, S. Logan, C.R. Ratliff, Moisture-associated skin damage: overview and pathophysiology, Journal of Wound, Ostomy, and Continence Nursing 38/3 (2011) 233-241. DOI https://doi.org/10.1097/won.0b013e318215f798
  • [12] R.J. Williams, E.D. Washington, M. Miodownik, C. Holloway, The Effect of Liner Design and Materials Selection on Prosthesis Interface Heat Dissipation, Prosthetics and Orthotics International 42/3 (2018) 275- 279. DOI: https://doi.org/10.1177/0309364617729923
  • [13] J. Żmudzki, M. Burzyński, G. Chladek, C. Krawczyk, CAD/CAM silicone auricular prosthesis with thermoformed stiffening insert, Archives of Materials Science and Engineering 83/1 (2017) 30-35. DOI: https://doi.org/10.5604/01.3001.0009.7539
  • [14] A.J. Nowak, L.A. Dobrzański, Geometrical structure investigation of the surface of internal oesophagus prosthesis, Archives of Materials Science and Engineering 83/2 (2017) 79-85. DOI: https://doi.org/10.5604/01.3001.0009.9171
  • [15] A.G. Hatfield, J.D. Morrison, Polyurethane Gel Liner Usage in the Oxford Prosthetic Service, Prosthetics and Orthotics International 25/1 (2001) 41-46. DOI: https://doi.org/10.1080/03093640108726567
  • [16] A. Shinde, I. Siva, Y. Munde, V. Deore, M.T.H. Sultan, A.U.M. Shah, F. Mustapha, Testing of Silicon Rubber/ Montmorillonite Nanocomposite for Mechanical and Tribological Performance, Nanomaterials 11/11 (2021) 3050. DOI: https://doi.org/10.3390/nano11113050
  • [17] S. Łagan, A. Liber-Kneć, The Determination of Mechanical Properties of Prosthetic Liners Through Experimental and Constitutive Modeling Approaches, Technical Transactions 115/3 (2018) 197-209. DOI: https://doi.org/10.4467/2353737XCT.18.048.8343
  • [18] K. Hagberg, R.J. Branemark, Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems, Prosthetics and Orthotics International 25/3 (2001) 186-194. DOI: https://doi.org/10.1080/03093640108726601
  • [19] M. Amin, M. Akbar, S. Amin, Hydrophobicity of silicone rubber used for outdoor insulation (an overview), Reviews on Advanced Materials Science 16/1-2 (2007) 10-26.
  • [20] I. Kalamarz, G. Chladek, M. Pokój, D. Łukowiec, C. Krawczyk, R. Stencel, E. Jabłońska-Stencel, The properties of experimental silicones reinforced with silica fillers for dentistry, Archives of Materials Science and Engineering 81/1 (2016) 22-29. DOI: https://doi.org/10.5604/18972764.1229622
  • [21] A. Ghanbari-Siahkali, S. Mitra, P. Kingshott, K. Almdal, C. Bloch, H.K. Rehmeier, Investigation of the Hydrothermal Stability of Cross-Linked Liquid Silicone Rubber (LSR), Polymer Degradation Stability 90/3 (2005) 471-480. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.04.016
  • [22] R.S. Maxwell, R. Cohenour, W. Sung, D. Solyom, M. Patel, The effects of 𝛾𝛾-radiation on the thermal, me-chanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber, Polymer Degradation and Stability 80/3 (2003) 443-450. DOI: https://doi.org/10.1016/S0141-3910(03)00028-4
  • [23] A.A. Al-Dharrab, S.B. Tayel, M.H. Abodaya, The Effect of Different Storage Conditions on the Physical Properties of Pigmented Medical Grade I Silicone Maxillofacial Material, International Scholarly Research Notices 2013 (2013) 58205. DOI: https://doi.org/10.1155/2013/582051
  • [24] J. Jiang, J. Pi, J. Cai, The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications, Bioinorganic Chemistry and Applications 2018 (2018) 1062562. DOI: https://doi.org/10.1155/2018/1062562
  • [25] J.A. Ruszkiewicz, A. Pinkas, B. Ferrer, T.V. Peres, A. Tsatsakis, M. Aschner, Neurotoxic Effect of Active Ingredients in Sunscreen Products, A Contemporary Review, Toxicology Reports 4 (2017) 245-259. DOI: https://doi.org/10.1016/j.toxrep.2017.05.006
  • [26] Z.Y. Zhang, H.M. Xiong, Photoluminescent ZnO Nanoparticles and Their Biological Applications, Materials 8/6 (2015) 3101-3127. DOI: https://doi.org/10.3390/ma8063101
  • [27] S. Kim, S.Y. Lee, H.J. Cho, Doxorubicin-Wrapped Zinc Oxide Nanoclusters for the Therapy of Colorectal Adenocarcinoma, Nanomaterials 7/11 (2017) 354. DOI: https://doi.org/10.3390/nano7110354
  • [28] H.M. Xiong, ZnO Nanoparticles Applied to Bioimaging and Drug Delivery, Advanced Materials 25/37 (2013) 5329-5335. DOI: https://doi.org/10.1002/adma.201301732
  • [29] P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaidya, Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications, Drug Discovery Today 22/12 (2017) 1825-1834. DOI: https://doi.org/10.1016/j.drudis.2017.08.006
  • [30] S.J. Enna, D.B. Bylund, Elsevier Science (Firm), xPharm, The Comprehensive Pharmacology, Elsevier, Amsterdam, 2008.
  • [31] Y. Zhu, Y. Tang, Z. Ruan, Y. Dai, Z. Li, Z. Lin, S. Zhao, L. Cheng, B. Sun, M. Zeng, J. Zhu, R. Zhao, B. Lu, H. Long, Mg(OH)2 Nanoparticles Enhance the Antibacterial Activities of Macrophages by Activating the Reactive Oxygen Species, Journal of Biomedical Materials Research: A 109/11 (2021) 2369-2380. DOI: https://doi.org/10.1002/jbm.a.37219
  • [32] K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, W.H. Park, Electrospinning of Polysaccharides for Regenerative Medicine, Advanced Drug Delivery Reviews 61/12 (2009) 1020-1032. DOI: https://doi.org/10.1016/j.addr.2009.07.006
  • [33] F. Croisier, C. Jérôme, Chitosan-Based Biomaterials for Tissue Engineering, European Polymer Journal 49/4 (2013) 780-792. DOI: https://doi.org/10.1016/j.eurpolymj.2012.12.009
  • [34] R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, V. Préat, Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, in: R. Jayakumar, M. Prabaharan, R. Muzzarelli (eds), Chitosan for Biomaterials II. Advances in Polymer Science, vol. 244, Springer, Berlin, Heidelberg, 2011, 19-44. DOI: https://doi.org/10.1007/12_2011_137
  • [35] H.M. Ibrahim, E.M.R. El-Zairy, Chitosan as a Biomaterial - Structure, Properties, and Electrospun Nanofibers, in: V. Bobbarala (ed.), Concepts, Compounds and the Alternatives of Antibacterials, IntechOpen, Rijeka, 2015, 81-101. DOI: https://doi.org/10.5772/61300
  • [36] I. Aranaz, R. Harris, A. Heras, Chitosan Amphiphilic Derivatives. Chemistry and Applications, Current Organic Chemistry 14/3 (2010) 308-330. DOI: https://doi.org/10.2174/138527210790231919
  • [37] I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed, A. Heras, Functional Characterization of Chitin and Chitosan, Current Chemical Biology 3/2 (2009) 203-230. DOI: https://doi.org/10.2174/2212796810903020203
  • [38] R. Jayakumar, M. Prabaharan, R.L. Reis, J.F. Mano, Graft Copolymerized Chitosan-Present Status and Applications, Carbohydrate Polymers 62/2 (2005) 142-158. DOI: https://doi.org/10.1016/j.carbpol.2005.07.017
  • [39] ASTM D638:Standard Test Method for Tensile Properties of Plastics, Type IV, 2022.
  • [40] ASTM D624-00: Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomer, 2007.
  • [41] ASTM D2240: Standard Test Method for Rubber Property - Durometer Hardness, 2021.
  • [42] ASTM D570: Standard Test Method for Water Absorption of Plastics, 2018.
  • [43] N.H. Aysa, Evaluating of mechanical properties of (silicone/arabic gum/fish hask) composites used as pressure garment prosthetics, periodicals of engineering and Natural Sciences 7/3 (2019) 1202-1208. DOI: http://dx.doi.org/10.21533/pen.v7i3.679.g390
  • [44] L. Feng, S. Li, S. Feng, Preparation and Characterization of Silicone Rubber with High Modulus via Tension Spring-Type Cross-linking, RSC Advances 7 (2017) 13130-13137. DOI: https://doi.org/10.1039/C7RA00293A
  • [45] M.J. Jweeg, A.K. Hassan, M.M. Almudhaffar, Experimental investigations and finite element modelling of a suggested prosthetic foot, Archives of Materials Science and Engineering 115/1 (2022) 21-33. DOI: https://doi.org/10.5604/01.3001.0016.0675
  • [46] X. Yang, Q. Li, Z. Li, X. Xu, H. Liu, S. Shang, Z. Song, Preparation and Characterization of Room-Temperature- Vulcanized Silicone Rubber Using Acrylpimaric Acid- Modified Aminopropyltriethoxysilane as a Cross- Linking Agent, ACS Sustainable Chemistry and Engineering 7/5 (2019) 4964-4974. DOI: https://doi.org/10.1021/acssuschemeng.8b05597
  • [47] D.R. Paul, J.E. Mark, Fillers for Polysiloxane (“silicone”) elastomers, Progress in Polymer Science 35/7 (2010) 893-901. DOI: https://doi.org/10.1016/j.progpolymsci.2010.03.004
  • [48] C.M. Brick, K. Senoo, M. Mori, K. Ito, High Tear Strength Silicone Elastomers with Low Hardness and High Elongation, Proceedings of the 44th ISTC International SAMPE Technical Conference, Charleston, SC, 2012.
  • [49] T. Rihayat, A. Nurhanifa, C. Tezara, Enhancing the Mechanical and Water Absorption Properties of PLA/Chitosan Composites by the Incorporation of Zinc Oxide Nanoparticles, Proceeding Book of the 3rd International Conference on Multidisciplinary Research, Vol. 03, No. 2, 2020, 5-11.
  • [50] T. Rihayat, A. Suryani, Morphology properties of polyurethane/clay nanocomposites based on palm oil polyol paint, Advanced Materials Research 647 (2013) 701-704. DOI: https://doi.org/10.4028/www.scientific.net/AMR.647.701
  • [51] X. Pan, Y. Wang, Z. Chen, D. Pan, Y. Cheng, Z. Liu, Z. Lin, X. Guan, Investigation of Antibacterial Activity and Related Mechanism of a Series of Nano-Mg(OH)2, ACS Applied Materials and Interfaces 5/3 (2013) 1137- 1142. DOI: https://doi.org/10.1021/am302910q
  • [52] Z. Atai, M. Atai, J. Amini, N. Salehi, In vivo study of antifungal effects of low-molecular-weight chitosan against Candida albicans, Journal of Oral Science 59/3 (2017) 425-430. DOI: https://doi.org/10.2334/josnusd.16-0295
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fb30764-1cd7-488a-b0f3-301801ed0849
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.