PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Innovative biomedical filaments for 3D printing in the form of short and biodegradable composite sticks modified with various additives were used to prepare biomaterials for further nasal implants. As the respiratory tract is considered to be potentially exposed to contamination during the implantation procedure there is a need to modify the implant with an antibacterial additives. The purpose of this work was to analyze the effect of biodegradable polymer – polycaprolactone (PCL) modification with various additives on its antibacterial properties. Methods: PCL filament modified with graphene (0.5, 5, 10% wt.), bioglass (0.4% wt.) and zinc-doped bioglass (0.4% wt.) were used to print spatial biomaterials using FDM 3D printer. Pure polymer biomaterials without additives were used as reference samples. The key task was to assess the antimicrobial impact of the prepared biomaterials against the following microorganisms: Staphylococcus aureus ATCC 25293, Escherichia coli ATCC 25922, Candida albicans ATCC 10231. Results: The research results point to a significant antibacterial efficacy of the tested materials against S. aureus and C. albicans, which, however, seems to decrease with increasing graphene content in the filaments. A complete lack of antibacterial efficacy against E. coli was determined. Conclusions: The tested biomaterials have important antibacterial properties, especially against C. albicans. The obtained results showed that biomaterials made of modified filaments can be successfully used in implantology, where a need to create temporary tissue scaffolds occurs.
Rocznik
Strony
131--138
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
autor
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Faculty of Health Sciences, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Department of Mechanical Engineering Fundamentals, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
  • Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
  • Department of Mechanical Engineering Fundamentals, ATH University of Bielsko-Biala, Bielsko-Biała, Poland
Bibliografia
  • [1] CHEN H., GAO D., WANG B., ZHAO R., GUAN M., ZHENG L., ZHOU X., CHAI Z., FENG W., Graphene oxide as an anaerobic membrane scaffold and antagonistic effects against pathogenic E. coli and S. aureus, Nanotechnology, 2014, 25 (16), DOI: 10.1088/0957-4484/25/16/165101.
  • [2] CIOŁEK L., KARAŚ J., OLSZYNA A.R., ZACZYŃSKA E., CZARNY A., ŻYWICKA B., SZAMAŁEK K., In Vitro Studies of Antibacterial Activity of Bioglasses Releasing Ag+, Key Eng. Mater., 2011, 493–494, 108–113, DOI: 10.4028/www.scientific.net/kem.493494.108.
  • [3] DIAS A.M., DA SILVA F.G., MONTEIRO A.P.F., PINZÓN--GARCÍA A.D., SINISTERRA R.D., CORTÉS M.E., Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease, Mater Sci. Eng. C. Mater., Biol. Appl., 2019, 103, 109798, DOI: 10.1016/ j.msec.2019.109798.
  • [4] DZIADEK M., ZAGRAJCZUK B., MENASZEK E., WEGRZYNOWICZ A., PAWLIK J., CHOLEWA-KOWALSKA K., Gel-derived SiO2–CaOP2O5 bioactive glasses and glass-ceramics modified by SrO addition, Ceram. Int., 2016, 42 (5), 58, 42–57, DOI: 10.1016/ j.ceramint.2015.12.128.
  • [5] FONSECA G.F.D., AVELINO S.D.O.M., MELLO D.D.C.R., PRADO R.F.D., CAMPOS T.M.B., VASCONCELLOS L.M.R.D., TRICHES E.D.S., BORGES A.L.S., Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance, J. Mater. Sci. Mater. Med., 2020, 31 (41), DOI: 10.1007/ s10856-020-06382-w.
  • [6] FREDENBERG S., WAHLGREN M., RESLOW M., AXELSSON A., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – A review, Int. J. Pharm., 2011, 415 (1–2), 34–52, https://doi.org/10.1016/ j.ijpharm.2011.05.049.
  • [7] HAN J.K., MARPLE B.F., SMITH T.L., MURR A.H., LANIER B.J., STAMBAUGH J.W., MUGGLIN A.S., Effect of steroid-releasing sinus implants on postoperative medical and surgical interventions: an efficacy meta-analysis, Int. Forum Allergy and Rh., 2012 (2), 271–279, DOI: 10.1002/alr.21044.
  • [8] HU S., CHANG J., LIU M., NING C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater Sci. Mater Med., 2009, 20, 281–286, DOI: 10.1007/s10856-008-3564-5.
  • [9] JI H., SUN H., QU X., Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges, Adv. Drug. Deliv. Rev., 2016, 105 (Pt B), 176–189, DOI:10.1016/j.addr.2016.04.009.
  • [10] KARATAS A., PEHLIVANOGLU F., SALVIZ M., KUVAT N., CEBI I.T., DIKMEN B., SENGOZ G., The effects of the time of intranasal splinting on bacterial colonization, postoperative complications, and patient discomfort after septoplasty operations, Braz. J. Otorhinolar., 2016, 82 (6), 654–661, DOI:10.1016/j.bjorl.2015.11.008.
  • [11] KURANTOWICZ N., SAWOSZ E., JAWORSKI S., KUTWIN M., STROJNY B., WIERZBICKI M., SZELIGA J., HOTOWY A., LIPIŃSKA L., KOZIŃSKI R., JAGIEŁŁO J., CHWALIBOG A., Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica, Nanoscale Res. Lett., 2015, 10 (23), DOI: 10.1186/s11671-015-0749-y.
  • [12] LINA G., BOUTITE F., TRISTAN A., BES M., ETIENNE J., VANDENESCH F., Bacterial Competition for Human Nasal Cavity Colonization: Role of Staphylococcal agr Alleles, Appl. Environ. Microb., 2003, 69 (1), 18–23, DOI: 10.1128/ AEM.69.1.18-23.200.
  • [13] LIU D., NIE W., LI D., WANG W., ZHENG L., ZHANG J., ZHANG J., PENG C., MO X., HE C., 3D printed PCL/SrHA scaffold for enhanced bone regeneration, Chem. Eng. J., 2019, 362 (15), 269–279, DOI:10.1016/j.cej.2019.01.015.
  • [14] LIU S., ZENG T.H., HOFMANN M., BURCOMBE E., WEI J., JIANG R., KONG J., CHEN Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 2011, 5 (9), 6971–6980.
  • [15] LIU Y., HE L., MUSTAPHA A., LI H., HU Z., LIN M., Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol., 2009, 107, 1193–1201, DOI: 10.1111/j.1365-2672.2009.04303.x.
  • [16] MA J., ZHANG J., XIONG Z., YONG Y., ZHAO X.S., Preparation, characterization and antibacterial properties of silver-modified graphene oxide, J. Mater Chem., 2011, 21, 3350–3352.
  • [17] MANGADLAO J.D., SANTOS C.M., FELIPE M.J.L., LEON A.C.C., RODRIGUES D.F., ADVINCULA R.C., On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films, Chem. Commun., 2015, 51 (14), 2886–2889.
  • [18] MIOLA M., VERNÉ E., VITALE‐BROVARONE C., BAINO F, Antibacterial Bioglass‐Derived Scaffolds: Innovative Synthesis Approach and Characterization, Int. J. Appl. Glass Sci., 2016, 7, 238–247, DOI:10.1111/ijag.12209.
  • [19] RAJZER I., KUROWSKA A., JABŁOŃSKI A., KWIATKOWSKI R., PIEKARCZYK W, HAJDUGA M.B., KOPEĆ J., SIDZINA M., MENASZEK E., Scaffolds modified with graphene as future implants for nasal cartilage, J. Mater. Sci., 2020, 55 (9), 4030–4042.
  • [20] RAJZER I., DZIADEK M., KUROWSKA A., CHOLEWA--KOWALSKA K., ZIĄBKA M., MENASZEK E., DOUGLAS T.E.L., Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment, J. Mater. Sci. Mater. Med, 2019, 30 (7), 80, DOI: 10.1007/s10856-019-6280-4.
  • [21] RAPACZ-KMITA A., SZARANIEC B., MIKOŁAJCZYK M., STODOLAK-ZYCH E., DZIERZKOWSKA E., GAJEK M., DUDEK P., Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems, Acta Bioeng. Biomech., 2020, 22 (2), DOI: 10.37190/ ABB-01523-2019-03
  • [22] ROHR N., NEBE J.B., SCHMIDLI F., MÜLLER P., WEBER M., FISCHER H., FISCHER J., Influence of bioactive glass-coating of zirconia implant surfaces on human osteoblast behavior in vitro, Dent. Mater., 2019, 35 (6), 862–870, DOI:10.1016/ j.dental.2019.02.029.
  • [23] SZPONDER T., STODOLAK-ZYCH E., POLKOWSKA I., SOBCZYŃSKA-RAK A., Impact of a pulsed magnetic field on selected polymer implant materials, Acta Bioeng. Biomech., 2019, 21 (1), DOI: 10.5277/ABB-01253-2018-04.
  • [24] TUREK A., STOKLOSA K., BORECKA A., PAUL-SAMOJEDNY M., KACZMARCZYK B., MARCINKOWSKI A., KASPERCZYK J., Designing Biodegradable Wafers Based on Poly(L-lactide-coglycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme, Pharm. Res., 2020, 37 (5), 90, DOI: 10.1007/s11095-020-02810-2.
  • [25] WOODRUFF M.A., HUTMACHER D.W., The return of a forgotten polymer – Polycaprolactone in the 21st century, Prog. Polym. Sci., 2010, 35 (10), 1217–1256.
  • [26] WU F., WEI J., LIU C., O’NEILL B., NGOTHAI Y., Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering, Compos. Part B-Eng., 2012, 43 (5), 2192–2197.
  • [27] XIAOYI X., QINGBIAO Y., YONGZHI W., HAIJUN Y., XUESI C., XIABIN J., Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles, Eur. Polym. J., 2016, 42 (9), 2081–2087, DOI:10.1016/j.eurpolymj.2006.03.032.
  • [28] ZANNI E., BRUNI E., CHANDRAIAHGARI C.R., DE BELLIS,G., SANTANGELO M.G., LEONE M., BREGNOCCHI A., MANCINI P., SARTO M.S., UCCELLETTI D., Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches, J. Nanobiotechnol., 2017, 15, 57, DOI: 10.1186/s12951-017-0291-4.
  • [29] ZHAN S., ZHU D., MA S., YU W., JIA Y., LI Y., YU H., SHEN Z., Highly efficient removal of pathogenic bacteria with magnetic graphene composite, ACS Appl. Mater Interfaces, 2015, 7 (7), 4290–4298.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9cad27ff-3cdf-4e18-ad0b-6f0f6e1a3f33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.