PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Fibroin Solution State in Calcium Chloride/Water/Ethanol for Improved Understanding of the Regeneration Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza stanu roztworu fibroiny w chlorku wapnia/wodzie/etanolu w celu lepszego zrozumienia procesu regeneracji
Języki publikacji
EN
Abstrakty
EN
Shaping of fibroin protein from Bombyx mori from calcium chloride/water/ethanol solution is of high interest for the manufacturing of biocompatible structures. Potentiometric titration experiments of the dissolved state permit new insight into the solution state of fibroin as a basis for improved regeneration. Titration experiments and infrared spectroscopy of the solution state support the model of an ion-rich hydration layer and interaction of the solvent with charged and polar groups of the fibroin, rather than through formation of defined calcium complexes. The potentiometric titration curves indicate the formation of calcium complexes at pH values above 9, most probably through involvement of basic amino acids and phenolic groups of tyrosine. After regeneration by the addition of methanol, the regenerated protein was characterised by FTIR, nitrogen and calcium analysis. The analysis of supernatants for their residual protein content indicated minor losses of protein, most probably low molecular weight proteins. The results contribute to an improved understanding of the solution state as a basis for larger scale regeneration, e.g. for the coating of textile fibres with regenerated fibroin.
PL
Fibroiny z Bombyx mori z roztworu chlorku wapnia/wody/etanolu są bardzo interesujące z punktu widzenia wytwarzania biokompatybilnych struktur. Eksperymenty potencjometryczne z miareczkowaniem pozwalają na nowy wgląd w roztwór fibroiny jako podstawy do lepszej regeneracji. Miareczkowanie i spektroskopia w podczerwieni roztworu wspierają model bogatej w jony warstwy hydratacyjnej i oddziaływanie rozpuszczalnika z naładowanymi i polarnymi grupami fibroiny. Potencjometryczne krzywe miareczkowania wskazują na tworzenie się kompleksów wapnia przy wartościach pH powyżej 9, najprawdopodobniej poprzez zaangażowanie podstawowych aminokwasów i grup fenolowych tyrozyny. Po regeneracji przez dodanie metanolu, zregenerowane białko scharakteryzowano za pomocą analizy FTIR, azotu i wapnia. Analiza pod kątem zawartości białka resztkowego wykazała niewielkie straty białka, najprawdopodobniej tego o niskiej masie cząsteczkowej. Wyniki przyczyniły się do lepszego poznania roztworu jako podstawy do regeneracji na większą skalę, np. do powlekania włókien tekstylnych regenerowaną fibroiną.
Rocznik
Strony
43--50
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Leopold-Franzens-University Innsbruck, Research Institute of Textile Chemistry and Textile Physics Höchsterstraße 73 A-6850 Dornbirn
autor
  • Leopold-Franzens-University Innsbruck, Research Institute of Textile Chemistry and Textile Physics Höchsterstraße 73 A-6850 Dornbirn
Bibliografia
  • 1. Padaki N V, Das B, Basu A. Advances in Silk Science and Technology, Chapter 1 – Advances in understanding the properties of silk, in Adv. Silk Sci. Technol., (Ed.: A. Basu), Woodhead Publishing, Cambridge, 2015, Ch. 1, p. 3.  
  • 2. Altman G H, Diaz F, Jakuba C, Calabro T, Horan R L, Chen J, Lu H, Richmond J, Kaplan D L. Silk-based biomaterials. Biomaterials 2003; 24: 401-416.  
  • 3. Vepari C, Kaplan D L. Silk as a biomaterial. Prog. Polym. Sci. 2007; 32: 9911007.  
  • 4. Pereira R F P, Silva M M, de Zea Bermudez V. Bombyx mori Silk Fibers: An Outstanding Family of Materials. Macromol. Mater. Eng. 2015; 300: 1171-1198.  
  • 5. Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J. Chem. Technol. Biotechnol. 2013; 88: 327-339.  
  • 6. Zhang Y Q, Tao M L, De Shen W, Mao J P, Chen Y H. Synthesis of silk sericin peptides–Lasparaginase bioconjugates and their characterization. J. Chem. Technol. Biotechnol. 2006; 81: 136-145.  
  • 7. Silva N H C S, Vilela C, Marrucho I M, Freire C S R, Pascoal Neto C, Silvestre A J D. Protein-based materials: from sources to innovative sustainable materials for biomedical Applications. J. Mater. Chem. B 2014; 2: 3715-3740.  
  • 8. Abdel-Naby W, Lawrence B D. Processing of silk biomaterials. in Adv. Silk Sci. Technol., (Ed.: A. Basu), Woodhead Publishing, Cambridge 2015, Ch. 9, p.171.  
  • 9. Hardy J G, Römer L M, Scheibel T R. Polymeric materials based on silk proteins. Polymer (Guildf). 2008; 49: 4309-4327.
  • 10. Teimouri A, Ebrahimi R, Emadi R, Beni B H, Chermahini A N. Nano-composite of silk fibroin–chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. Int. J. Biol. Macromol. 2015; 76: 292-302.
  • 11. Samal S K, Kaplan D L, Chiellini E. Ultrasound sonification effects on silk fibroin protein. Macromol. Mater. Eng. 2013; 298: 1201-1208.
  • 12. Srisuwan Y, Srihanam P, Baimark Y. Preparation of silk fibroin microspheres and its application to protein adsorption. J. Macromol. Sci., Part A: Pure and Appl. Chem. 2009; 46: 521-525.
  • 13. Yetiskin B, Okay O. High-strength silk fibroin scaffolds with anisotropic mechanical properties. Polymer 2017; 112: 61-70.
  • 14. Bie S, Ming J, Zhou Y, Zhong T, Zhang F, Zuo B. Rapid formation of flexible silk fibroin gel-like films. J. Appl. Polym. Sci. 2015; 132: 41842.
  • 15. Silva M F, De Moraes M A, Nogueira G M, Rodas A C D, Higa O Z, Beppu M M. Glycerin and ethanol as additives on silk fibroin films: Insoluble and malleable films. J. Appl. Polym. Sci. 2013;128: 115-122.
  • 16. Zuo L, Zhang F, Gao B, Zuo B. Fabrication of Electrical Conductivity and Reinforced Electrospun Silk Nanofibers with MWNTs. FIBRES & TEXTILES in Eastern Europe 2017; 25, 3(123): 40-44. DOI: 10.5604/01.3001.0010.1687.
  • 17. Liang C X, Hirabayashi K. Improvements of the physical properties of fibroin membranes with sodium alginate. J. Appl. Polym. Sci. 1992; 45: 19371943.
  • 18. Ha S W, Park Y H, Hudson S M. Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules, 2003; 4: 488-496.
  • 19. Kawahara Y, Furukawa K, Yamamoto T. Self-Expansion Behavior of Silk Fibroin Film. Macromol. Mater. Eng. 2006; 291: 458-462.
  • 20. Ajisawa A. Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution. J.Seric. Sci. Jpn 1998; 67: 91-94.
  • 21. Mathur A B, Tonelli A, Rathke T, Hudson S. The dissolution and characterisation of Bombyx Mori Silk Fibroin in Calcium Nitrate-Methanol Solution and the Regeneration of Films. Biopolymers 1997; 42: 61-74.
  • 22. Matsumoto A, Lindsay A, Abedian B, Kaplan D L. Silk Fibroin Solution Properties Related to Assembly and Structure. Macromol. Biosci. 2008; 8: 1006-1018.
  • 23. Liu Y, Liu H, Qian J, Deng J, Yu T. Immobilization of Glucose Oxidase in the Regenerated Silk Fibroin Membrane: Characterization of the Membrane Structure and Its Application to an Amperometric Glucose Sensor Employing Ferrocene as Electron Shuttle. J. Chem. Technol. Biotechnol. 1995; 64: 269-276.
  • 24. Zuo B, Liu L, Wu Z. Effect on properties of regenerated silk fibroin fiber coagulated with aqueous methanol/ethanol. J. Appl. Polym. Sci. 2007; 106: 53-59.
  • 25. Sun Y, Shao Z, Ma M, Hu P, Liu Y, Yu T. Acrylic Polymer – Silk Fibroin Blend Fibres. J. Appl. Polym. Sci. 1997; 65:959966.
  • 26. Strobin G, Wawro D, Stęplewski W, Ciechańska D, Jóźwicka J, Sobczak S, Haga A. Formation of Cellulose/Silk-Fibroin Blended Fibres. FIBRES & TEXTILES in Eastern Europe 2006; 14, 4 (58): 32-35.
  • 27. Strobin G, Ciechańska D, Wawro D, Stęplewski W, Jóźwicka J, Sobczak S, Haga A. Chitosan Fibres Modified by Fibroin. FIBRES & TEXTILES in Eastern Europe 2007; 15, 5-6(64-65): 146-148.
  • 28. Wang Q, Chen Q, Yang Y, Shao Z. Effect of Various Dissolution Systems on the Molecular Weight of Regenerated Silk Fibroin. Biomacromolecules 2013; 14: 285-289.
  • 29. Kuzmina OG, Sashina ES, Novoselov NP, Zaborski M. Blends of Cellulose and Silk Fibroin in 1-buthyl-3-methylimidazolium chloride Based Solutions. FIBRES & TEXTILES in Eastern Europe 2009; 17, 6(77): 36-39.
  • 30. Kaplan D L, Mello C M, Arcidiacono S, Fossey S, Senecal K, Muller W. in Protein-Based Mater., (Eds.: K. McGrath, David. Kaplan), Birkhauser Boston, Boston, USA 1997, Ch. 4, p. 114.
  • 31. Ngo H T, Bechtold T. Sorption behaviour of reactive dyed labelled fibroin on fibrous substrates. J. Appl. Polym. Sci. 2016; 133(35): DOI: 10.1002/APP 43880.
  • 32. Ngo H T, Bechtold T. Surface modification of textile material through deposition of regenerated silk fibroin. J. Appl. Polym. Sci. 2017; DOI: 10.1002/ app.45098.
  • 33. Arthur R J M, Martell E. Determination and Use of Stability Constants. VCH Publishers, New York/ Weinheim 1992.
  • 34. Wang F, Cao T T, Zhang Y Q. Effect of silk protein surfactant on silk degumming and its properties. Mater. Sci. Eng. C 2015; 55: 131-136.
  • 35. Reumann R D., Pruefverfahren in der Textil- und Bekleidungsindustrie, Springer, Berlin, Germany 2000.
  • 36. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248-254.
  • 37. Dubey P, Murab S, Karmakar S, Chowdhury P K, Ghosh S. Modulation of self-assembly process of fibroin: an insight for regulating the conformation of silk biomaterials. Biomacromolecules 2015; 16(12): 3936-3944.
  • 38. Lu Q, Zhang B, Li M, Zuo B, Kaplan D L, Huang Y, Zhu H. Degradation mechanism and control of silk fibroin. Biomacromolecules 2011; 12: 1080-1086.
  • 39. Hu X, Kaplan D, Cebe P. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules 2006; 39(18): 6161-6170.
  • 40. Zhang C, Song D, Lu Q, Hu X, Kaplan D L, Zhu H. Flexibility Regeneration of Silk Fibroin in Vitro. Biomacromolecules 2012; 13(7): 2148-2153.
  • 41. Rath H. Lehrbuch Der Textilchemie, Springer-Verlag Berlin Heidelberg, 1972.
  • 42. Vickery H B, Block R J. The basic amino acids of silk fibroin. The determination of basic amino acids yielded by proteins, J. Biol. Chem. 1931; 93: 105-112
  • 43. Corfield M C, Howitt F O, Robson A. Basic Amino-acids of Silk Fibroin, Nature 1954; 174: 603-604.
  • 44. Wang H-Y, Zhang Y-Q. Effect of regeneration of liquid silk fibroin on its structure and characterization. Soft Matter 2013; 9:138-145.
  • 45. Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the HL complex of silk fibroin produced by Bombyx mori. Insect Biochem. Mol. Biol. 1999; 29: 269-276.
  • 46. Kundu B, Rajkhowa R, Kundu S C, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 2013; 65: 457-470.
  • 47. Whewell C S. Fibres, Animal, Silk. Vol 5., J. F. Thorpe, M. A. Whiteley, in Thorpe’s Dict. Appl. Chem., 4th Edition, New York 1941, p. 87.
  • 48. “Calcium carbonate (precipitated),” http://webbook.nist.gov/cgi/cbook. cgi?ID=C471341&Mask=80
  • 49. Rey F, Antelo J M, Arc F, Penedo FJ. Equilibrium Constants of Metal Amino Acid Complexes. Polyhedron 1990; 9/5: 665468.
  • 50. Fox S, Bu1sching I, Barklage W, Strasdeit H. Coordination of Biologically Important r-Amino Acids to Calcium (II) at High pH: Insights from Crystal Structures of Calcium a-Aminocarboxylates. Inorg. Chem. 2007; 46: 818-824.
  • 51. https://www.britannica.com/science/coordination-compound/Ligands-and-chelates, accessed 2016.07.03.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c99212f-c802-44fa-9ad5-b0ac76df5576
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.