PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of microstructure anisotropy on low temperature fracture of ultrafine-grained iron

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This papers deals with the character on low (−180 °C) temperature fracture of iron. Microcrystalline and ultrafine-grained (UFG) iron rods were investigated. To obtain UFG material 20 mm in diameter iron rod was hydrostatically extruded (HE) in two steps: from 20 to 12 mm and from 12 to 8 mm. Because of microstructure anisotropy caused by HE mini-disc and mini-beam samples were cut off from perpendicular and longitudinal cross-section of the rods. Microcrystalline rod fractured in brittle manner at low temperature for both cross-sections, but in UFG iron fracture character depended on grain's shape. For samples were crack propagates parallel to the grain's elongation axis intercrystalline fracture occurred. For mini-beams were crack propagates crosswise to the grain elongation axis transcrystalline fracture occurred and force deflection curve was similar to those obtained for room temperature.
Rocznik
Strony
1166--1182
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
autor
  • Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska St., 01-142 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warsaw, Poland
Bibliografia
  • [1] J. Skogsrud, C. Thaulow, Effect of crystallographic orientation on nanomechanical modelling of an iron single crystal cracked cantilever beam, Mater. Sci. Eng. A 685 (2017) 274–283. http://dx.doi.org/10.1016/j.msea.2016.12.060.
  • [2] M. Gizynski, Z. Pakiela, W. Chrominski, M. Kulczyk, The low temperature fracture behaviour of hydrostatically extruded ultra-fine grained Armco iron, Mater. Sci. Eng. A 632 (2015) 35–42. http://dx.doi.org/10.1016/j.msea.2015.02.066.
  • [3] N.B. Shaw, G.M. Spink, The effect of temperature, specimen size, and geometry on the fracture toughness of a 3 pct NiCrMoV low pressure turbine disc steel, Metall. Trans. A 14 (1983) 751–759. http://dx.doi.org/10.1007/BF02643792.
  • [4] B. Tanguy, J. Besson, R. Piques, A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, Part I: experimental results, Eng. Fract. Mech. 72 (2007) 49–72.
  • [5] B. Romelczyk, M. Kulczyk, Z. Pakieła, Microstructure and mechanical properties of fine-grained iron processed by hydroextrusion, Arch. Metall. Mater. 57 (2012) 1–5. http://dx.doi.org/10.2478/v10172-012-0098-0.
  • [6] A. Hohenwarter, R. Pippan, Anisotropic fracture behavior of ultrafine-grained iron, Mater. Sci. Eng. A 527 (2010) 2649–2656. http://dx.doi.org/10.1016/j.msea.2009.12.033.
  • [7] X.N. Zhang, Y.D. Qu, R. De Li, Low temperature impast toughness and fracture analysis of EN-GJS-400-18-LT ductile iron under instrumented impact load, J. Iron Steel Res. Int. 22 (2015) 864–869. http://dx.doi.org/10.1016/S1006-706X(15)30082-0.
  • [8] A. Hohenwarter, C. Kammerhofer, R. Pippan, The ductile to brittle transition of ultrafine-grained Armco iron: an experimental study, J. Mater. Sci. 45 (2010) 4805–4812. http://dx.doi.org/10.1007/s10853-010-4635-9.
  • [9] T.G. Langdon, Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035–7059. http://dx.doi.org/10.1016/j.actamat.2013.08.018.
  • [10] P. Bazarnik, B. Romelczyk, Y. Huang, M. Lewandowska, T.G. Langdon, Effect of applied pressure on microstructure development and homogeneity in an aluminium alloy rocessed by high-pressure torsion, J. Alloys Compd. 688 (2016) 736–745. http://dx.doi.org/10.1016/j.jallcom.2016.07.149.
  • [11] P. Bazarnik, B. Romelczyk, M. Kulczyk, M. Lewandowska, The strength and ductility of 5483 aluminium alloy processed by various SPD methods, Mater. Sci. Forum 765 (2013) 423–428. http://dx.doi.org/10.4028/www.scientific.net/MSF.765.423.
  • [12] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R. Hong, Ultra-fine grained bulk aluminum produced by accumulative rollbonding proces, Scr. Mater. 40 (1999) 795–800.
  • [13] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979. http://dx.doi.org/10.1016/j.pmatsci.2008.03.002.
  • [14] Y.T. Zhu, T.G. Langdon, Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials, Mater. Sci. Eng. A 409 (2005) 234–242. http://dx.doi.org/10.1016/j.msea.2005.05.111.
  • [15] Z.Y.Y. Wang, E. Ma, R.Z. Valiev, Tough nanostructured metals at cryogenic temperatures, Adv. Mater. 16 (2004) 328–331.
  • [16] J.R. Rice, Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids 40 (1992) 239–271. http://dx.doi.org/10.1016/S0022-5096(05)80012-2.
  • [17] I.A. Ovid'ko, A.G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials, Acta Mater. 58 (2010) 5286–5294. http://dx.doi.org/10.1016/j. actamat.2010.05.058.
  • [18] R.W. Armstrong, S.D. Antolovich, The grain size dependence of cleavage cracking in a-iron, in: Proc. 18th Eur. Conf. Fract., 2010.
  • [19] A. Hohenwarter, R. Pippan, Fracture of ECAP-deformed iron and the role of extrinsic toughening mechanisms, Acta Mater. 61 (2013) 2973–2983. http://dx.doi.org/10.1016/j.actamat.2013.01.057.
  • [20] T. Leitner, A. Hohenwarter, W. Ochensberger, R. Pippan, Fatigue crack growth anisotropy in ultrafine-grained iron, Acta Mater. 126 (2017) 154–165. http://dx.doi.org/10.1016/j.actamat.2016.12.059.
  • [21] T. Wejrzanowski, W. Spychalski, K. Różniatowski, K. Kurzydłowski, Image based analysis of complex microstructures of engineering materials, Int. J. Appl. Math. Comput. Sci. 18 (2008) 33–39. http://dx.doi.org/10.2478/v10006-008-0003-1.
  • [22] R.M. Molak, K. Paradowski, T. Brynk, L. Ciupinski, Z. Pakiela, K.J. Kurzydlowski, Measurement of mechanical properties In a 316L stainless steel welded joint, Int. J. Press. Vessel. Pip. 86 (2009) 43–47. http://dx.doi.org/10.1016/J.IJPVP.2008.11.002.
  • [23] M.P. Manahan, A.S. Argon, O.K. Harling, The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties, J. Nucl. Mater. 104 (1981) 1545–1550. http://dx.doi.org/10.1016/0022-3115(82)90820-0.
  • [24] B. Romelczyk, T. Brynk, R.M. Molak, A. Jastrzębska, K. Nowak, Z. Pakiela, Magnesium AZ91 alloy cast mechanical properties measured by the miniaturized disc-bend test, Key Eng. Mater. 592–593 (2013) 805–808. http://dx.doi.org/10.4028/www.scientific.net/KEM.592-593.805.
  • [25] R. Hurst, K. Matocha, Experiences with the European code of practice for small punch testing for creep, tensile and fracture behavior, in: ف Proc 3th Int. Conf. SSTT, 2014, 1–26.
  • [26] F. Dobeš, K. Milička, Comparison of conventional and small punch creep tests of mechanically alloyed Al–C–O alloys, Mater. Charact. 59 (2008) 961–964. http://dx.doi.org/10.1016/j.matchar.2007.08.006.
  • [27] M. Abendroth, M. Kuna, Identification of ductile damage and fracture parameters from the small punch test using neural networks, Eng. Fract. Mech. 73 (2006) 710–725. http://dx.doi.org/10.1016/j.engfracmech.2005.10.007.
  • [28] E. Altstadt, M. Serrano, M. Houska, A. García-Junceda, Effect of anisotropic microstructure of a 12Cr-ODS steel on the fracture behaviour in the small punch test, Mater. Sci. Eng. A 654 (2016) 309–316. http://dx.doi.org/10.1016/j.msea.2015.12.055.
  • [29] R.M. Molak, M.E. Kartal, Z. Pakiela, K.J. Kurzydlowski, The effect of specimen size and surface conditions on the local mechanical properties of 14MoV6 ferritic–pearlitic steel, Mater. Sci. Eng. A 651 (2016) 810–821. http://dx.doi.org/10.1016/j.msea.2015.11.037.
  • [30] T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, Estimation of the small punch test, J. Alloys Compd. 582 (2014) 708–717. http://dx.doi.org/10.1016/j.jallcom.2013.08.009.
  • [31] M.F.G.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, Mechanical properties of iron processed by severe plastic deformation, Metall. Mater. Trans. A 34 (2003) 71–83.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c860f2d-2393-4b3c-9d95-655a3605c9a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.