Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effectiveness of lightning protection on the power and distribution grid is a significant factor, which influences the power distribution reliability and the failure rate of system elements. As part of this article, a mathematical model will be presented, taking into account selected parameters that affect the assessment of the lightning hazard of an overhead line. The proposed model will consider the location of the object near the line and the adjustment of line conductor overhangs. Moreover, the mentioned mathematical model allows for analyzing the impact of considered parameters on the protection level of the power system, and transient overvoltages that occur in this system. The article contains also a detailed description of an effective and fast method to assess the lightning discharge impact on the power system with insufficient data. The introduced model was tested to verify the correctness of its operation by comparison of calculation results and functional data. High convergence of calculated and functional data and uncomplicated model structure ensure a wide range of applications for the proposed solution to easily prevent emergency situations in the power system. Furthermore, the described model gives the opportunity to assess the reduction of the range of selectivity zone associated with the power line, in conjunction with the impact of constructional peculiarities and a near object.
Rocznik
Tom
Strony
art. no. e135838
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 2, 10-719 Olsztyn, Poland
- Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine
autor
- Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine
Bibliografia
- [1] J.L. He and R. Zeng, “Lightning shielding failure analysis of 1000 kV ultra-high voltage AC transmission line”, Proc. CIGRE Session, 2010, pp. 1‒9.
- [2] A. Borghetti, G. Martinez Figueiredo Ferraz, F. Napolitano, C.A. Nucci, A. Piantini, and F. Tossani, “Lightning protection of a multi-circuit HV-MV overhead line”, Electr. Power Syst. Res. 180, 1‒10 (2020).
- [3] A. Murphy, “Lightning strike direct effects”, Polymer Composites in the Aerospace Industry, 2nd Edition, Woodhead Publishing, 2020.
- [4] G. Shanqiang, W. Jian, W. Min, G. Juntian, Z. Chun, and L. Jian, “Study on lightning risk assessment and early warning for UHV DC transmission channel”, High Voltage 4(2), 144‒150 (2019).
- [5] R.G. Deshagoni, T. Auditore, R. Rayudu, and C.P. Moore, “Factors Determining the Effectiveness of a Wind Turbine Generator Lightning Protection System”, IEEE Trans. Ind. Appl 55(6), 6585‒6592 (2019).
- [6] J. Bendík, et al., “Experimental verification of material coefficient defining separation distance for external lightning protection system”, J. Electrostat. 98, 69‒74 (2019).
- [7] K. I. Pruslin, “Organization for increasing lightning resistance of overvoltage lines PJSC “FGC UES””, VI Russian Conference on Lightning Protection, 2018, pp. 1‒24.
- [8] G. E. Masin, “Indicators of lightning resistance of power facilities of Kubanenergo PJSC and measures to increase them”, VI Russian Conference on Lightning Protection, 2018, pp. 1‒9.
- [9] A. Andreotti, A. Pierno, and V.A. Rakov, “A new tool for calculation of lightning-induced voltages in power systems – ”Part I: Development of circuit model”, IEEE Trans. Power Del. 30(1), 326‒333 (2015).
- [10] C. Wooi, Z. Abul-Malek, M. Rohani, A. Yusof, S. Arshad, and A. Elgayar, “Comparison of lightning return stroke channel-base current models with measured lightning current”, Bull. EEI 8(4), 1478‒1488(2019).
- [11] T.H. Thang, Y. Baba, V.A. Rakov, and A. Piantini, “FDTD computation of lightning-induced voltages on multi-conductor lines with surge arresters and pole transformers”, IEEE Trans. Electromagn. Compat. 57(3), 442‒447(2015).
- [12] M. Brignone, F. Delfino, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of power system lightning performance Part I: Model and numerical solution using the PSCAD-EMTDC platform”, IEEE Trans. Electromagn. Compat. 59(1), 137‒145 (2017).
- [13] M.E.M. Rizk et al., “Protection Against Lightning-Induced Voltages: Transient Model for Points of Discontinuity on Multiconductor Overhead Line”, IEEE Trans. Electromagn. Compat. 62(4), 1209‒1218 (2020), doi: 10.1109/TEMC.2019.2940535.
- [14] J. Zhang et al., “Evaluation of the Lightning-Induced Voltages of Multiconductor Lines for Striking Cone-Shaped Mountain, ” IEEE Trans. Electromagn. Compat. 61(5), 1534‒1542 (2019).
- [15] Q. Li et al., “On the influence of the soil stratification and frequency-dependent parameters on lightning electromagnetic fields”, Electr. Power Syst. Res. 178, 1‒10(2020).
- [16] E. Soto and E. Perez, “Lightning-induced voltages on overhead lines over irregular terrains”, Electr. Power Syst. Res. 176, 105941 (2019).
- [17] M. Brignone, D. Mestriner, R. Procopio, M. Rossi, and F. Rachidi, “Evaluation of the mitigation effect of shield wires on lightning-induced overvoltages in MV distribution systems using statistical analysis”, IEEE Trans. Electromagn. Compat. 60(5), 1‒10 (2018).
- [18] M.R. Bank Tavakoli and B. Vahidi, “Shielding failure rate calculation by means of downward and upward lightning leader movement models: Effect of environmental conditions”, J. Electrostat. 68, 275‒283 (2010).
- [19] Y. Xu and M. Chen, “Striking Distance Calculation for Flat Ground and Lightning Rod by a 3D Self-Organized Leader Propagation Model”, Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
- [20] V. Cooray, C.A. Nucci, and F. Rachidi, “On the Possible Variation of the Lightning Striking Distance as Defined in the IEC Lightning Protection Standard as a Function of Structure Height”. Intern. Conf. on Lightning Protection, Vienna, Austria, 2012.
- [21] M.E.M. Rizk and G.N. Trinh, High voltage engineering, p. 804, Taylor and Francis Group, LLC, 2014.
- [22] Lightning protection guide. Dehn + Sohne GmbH + Co.KG., Germany, 2007/2012.
- [23] S. Takatoshi, “Lightning striking characteristics to tall structures”, IEEJ Trans. Electr. Electron. Eng. 13, 938‒947 (2017).
- [24] P.N. Mikropoulos and T.E. Tsovilis, “Striking Distance and Interception Probability, ” IEEE Trans. Power Delivery 23(3), 1571‒1580 (2008).
- [25] Y. Xie, M. Dong, H. He, J. He, H. Cai, and X. Chen, “A new tool for lightning performance assessment of overhead transmission lines”, Proc. 7th Asia-Pacific Int. Conf. Light., 2011, pp. 513‒519.
- [26] D. Spalek, “Proposal of the criterion for transmission line lumped parameters analysis”, Bull. Pol. Ac.: Tech. 67(6), 1181‒1186 (2019).
- [27] G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure – a survey”, Bull. Pol. Ac.: Tech. 59(4), 455‒473 (2011).
- [28] S. Robak and R.M. Raczkowski, “Substations for offshore wind farms: a review from the perspective of the needs of the Polish wind energy”, Bull. Pol. Ac.: Tech. 66(4), 517‒528 (2018).
- [29] M. Borecki and J. Starzyński, “Selected Aspects of Numerical Models and Cost Comparison Analysis of Surge Protection Device”, Progress in Applied Electrical Engineering (PAEE), Poland, 2019, pp. 1‒4.
- [30] M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids”, Bull. Pol. Ac.: Tech. 68(4), 769‒776 (2020).
- [31] M. Borecki, “A Proposed New Approach for the Assessment of Selected Operating Conditions of the High Voltage Cable Line”, Energies 13, 5275(1‒15) (2020).
- [32] Z. Flisowski, Calculation of atmospheric surges in power lines based on antenna wave theory. Electrotechnical Dissertations, Volume XV, Z.1, pp. 177‒194, 1968.
- [33] M. Borecki, Analysis of atmospheric overvoltages protection of medium voltage overhead lines with covered conductors, pp. 1‒128, Warszawa, Wyd. P.W. 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9bf0103c-e033-4e47-9c39-355f1e8f6a3c