PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Stormwater System on the Receiver

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The surface water quality assessment could be based on a combined physical and chemical analysis, but it could also be determined with bioindication methods. Classical physicochemical analysis is in most cases more expensive and time-consuming than the bioindication methods. This type of analysis also requires expensive equipment and shows the situation in the water only at the moment of sampling. Although the bioindication methods are often complicated, they allow a relatively inexpensive estimation of the water quality. Moreover, during their implementation, the substances harmful to the environment are not generated, and the obtained results usually reflect the total interaction of all factors and substances to the analyzed living organisms. Indicator organisms or their communities applied to the research, with identified ranges of tolerance to selected factors, could help to determine the physical and chemical parameters of water. This paper presents a bioindication study with an effect of stormwater system on the receiver – the Bystrzyca river, in Lublin, Poland. The level of saprophyty of the river sector was calculated based on the selected species of algae (diatoms and green algae) and the influence of the stormwater discharge on the communities of these organisms was determined.
Słowa kluczowe
Rocznik
Strony
52--59
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Schmalhausen Institute of Zoology NAS of Ukraine, B. Khmelnitsky Str. 15, 01030 Kyiv, Ukraine
  • Lublin University of Technology, Faculty of Fundamentals of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
  • Sumy Makarenko State Pedagogical University, Romenska, 87, 40002 Sumy, Ukraine
autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
  • Schmalhausen Institute of Zoology NAS of Ukraine, B. Khmelnitsky Str. 15, 01030 Kyiv, Ukraine
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Adamiec P. 2008. Wykorzystanie walorów przyrodniczo-krajobrazowych dolin rzecznych Lublina w rekreacji, Nauka Przyroda Technologie, 2(4), 47.
  • 2. Babko R., Kuzmina T., Suchorab Z., Widomski M.K., Franus M. 2016. Influence of treated sewage discharge on the benthos ciliate assembly in the lowland river. Ecological Chemistry and Engineering S, 23(3), 461-471.
  • 3. Carter J.L., Resh V.H., Hannaford M.J., Myers M.J. 2006. Macroinvertebrates as biotic indicators of environmental quality. In: Hauer FR, Lamberti GA, editor. Methods in Stream Ecology. Amsterdam: Academic Press, 2006, 805-833.
  • 4. Chomczyńska M., Montusiewicz A., Malicki J., Łagód G. 2009. Application of Saprobes for Bioindication of Wastewater Quality. Environmental Engineering Science, 26(2), 289-295.
  • 5. Desrosiers C., Leflaive J., Eulin A., Ten-Hagea L. 2013. Bioindicators in marine waters: Benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems, Ecological Indicators, 32, 25–34.
  • 6. Gasperi J., Gromaire M.C., Kafi M., Moilleron R., Chebbo G. 2010. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer system. Water Research, 44, 5875-5886.
  • 7. Gorzel M., Kornijow R. 2007. The response of zoobenthos to „natural channelization” of a small river. Ecohydrology and Hydrobiology, 7(1), 59-70.
  • 8. Gorzel M., Kornijów R., Buczyńska E. 2018. Quality of rivers: comparison of hydro-morphological, physical-chemical and biological methods. Ecological Chemistry and Engineering. S, 25(1), 101-122.
  • 9. Gray N.F., Delaney E. 2010. Measuring community response of bentic macroinvertebrates in an erosional river impacted by acid mine drainage by use of a simple model. Ecological Indicators, 10, 668–675.
  • 10. Grzywna A. 2014. Chemical water quality indicators in basin forest Parczew. Ecological Engineering, 36, 120-127.
  • 11. Grzywna A., Jóźwiakowski K., Gizińska-Górna M., Marzec M., Mazur A., Obroślak R. 2016. Analysis of ecological status of surface waters in the Bystrzyca river in Lublin. Journal of Ecological Engineering, 17(5), 203-207.
  • 12. Gücker B., Brauns M., Pusch M.T. 2006. Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. Journal of the North American Benthological Society, 25, 313–329.
  • 13. Iliopoulou-Georgudaki J., Kantzaris V., Katharios P., Kaspiris P., Georgiadis Th., Montesantou B. 2003. An application of different bioindicators for assessing water quality: a case study in the rivers Alfeios and Pineios (Peloponnisos, Greece). Ecological Indicators, 2, 345–360.
  • 14. Janicka E., Kanclerz J., Borowiak K., Wiatrowska K., Lisiak M. 2017. Quality water in bogdanka stream. Ecological Engineering, 18 (1), 202-208.
  • 15. Jaromin K.M., Girol A., Głowienka R., Łagód G. 2012. Jakość ścieków deszczowych wybranego kolektora zbiorczego miasta Lublin na tle jakości wód odbiornika – rzeki Bystrzycy. Inżynieria Środowiska Młodym Okiem, 1, 247-251
  • 16. Jaromin-Gleń K.M., Widomski M.K., Łagód G., Mazurek W. 2012. Concentrations of pollutants in storm wastewater for selected catchment in Lublin, Poland. Proceedings of ECOpole 2012, 6(2).
  • 17. Joshi U.M., Balasubramanian R. 2010. Characteristics and environmental mobility of trace elements in urban runoff. Chemosphere, 80, 310-318.
  • 18. Kolkwitz R., Marsson K. 1908. Ökologie der pflanzlichen Saprobien Ber. dt. bot. Ges., 26A, 505-519.
  • 19. Kolkwitz R., Marsson K. 1909. Ökologie der tierischen Saprobien Int. Revue ges. Hydrobiol. Hydrogr., 2, 126-152.
  • 20. Kolkwitz R. 1950. Ökologie der Saprobien SchReihe Ver. Wass. Boden – u. Lufthyg. 4, 1-64.
  • 21. Kominkova D., Stransky D., St’astna G., Caletkova J., Nabelkova J., Handova Z. 2005. Identifica tion of ecological status of stream impacted by urban drainage. Waterer Science and Technology, 51(2), 249-256.
  • 22. Konstantinov A.S. 1979. Obshchaya hydrobiologia. M. Vysshaya shkola.
  • 23. Lane C.R., Brown M.T. 2007. Diatoms as indicators of isolated herbaceous wetland condition in Florida, USA. Ecological Indicators, 7, 521–540.
  • 24. Li L., Zheng B., Liu L.. 2010. Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends, Procedia Environmental Science, 2, 1510-1524.
  • 25. Libudzisz Z., Kowal K., Żakowska Z. 2007. Mikrobiologia techniczna – tom 1, Wydawnictwo Naukowe PWN, Warszawa.
  • 26. Łagód G., Malicki J., Chomczyńska M., Montusiewicz A. 2007. Interpretation of the results of wastewater quality biomonitoring using saprobes. Environmental Engineering Science, 24(7), 873-879.
  • 27. Majerek D., Duda S., Babko R., Widomski M.K. 2019. Statistical analysis of the water pollution indicators pertaining to treated municipal sewage introduced to the river. MATEC Web of Conferences 252, 09009,
  • 28. Ociepa E. 2011. Ocean zanieczyszczenia ścieków deszczowych trafiających do kanalizacji deszczowej. Inżynieria i Ochrona Środowiska, 14(4), 357-364.
  • 29. Pantle R., Buck H. 1955. Die Biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas und Wasserfach, 96(18), 604.
  • 30. Pantle R. 1956. Biologische Flussuberwachung. Wasserwirtschaft, 46(8), 206-209.
  • 31. Pliashechnyk V., Danko Y., Łagód G., Drewnowski J., Kuzmina T., Babko R. 2018. Ciliated protozoa in the impact zone of the Uzhgorod treatment plant. E3S Web of Conferences, 30 (02008), 1-7.
  • 32. R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  • 33. Sladeček V. 1973. System of water quality from the biological point of view. Arch. Hydrobiol. Beih. Ergebn. Limnol., 7(7), 1-218.
  • 34. Smith V.H., Tilman G.D., Nekola J.C. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100 (1-3), 179-196.
  • 35. Spänhoff B., Bischof R., Böhme A., Lorenz S., Neumeister K., Nöthlich A., Küsel K. 2007. Assessing the impact of effluents from a modern wastewater treatment plant on breakdown of coarse particulate organic matter and benthic macroinvertebrates in a lowland river. Water, Air, & Soil Pollution, 180, 119-129.
  • 36. Wakelin S.A., Colloff M.J., Kookana R.S. 2008. Assessing the effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Applied and Environmental Microbiology, 74, 2659-2668.
  • 37. Wickham H. 2009. ggplot2: elegant graphics for data analysis. Springer New York.
  • 38. Wright I.A., Chessman B.C., Fairweather P.G., Benson L.J. 1995. Measuring the impact of sewage effluent of an upland stream: the effect of different levels of taxonomic resolution and quantification. Australian Journal of Ecology, 20, 142–149.
  • 39. Żbikowski R., Szefer P., Latała P. 2007. Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Science of The Total Environment, 387, 320–332.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9be2f1bd-0e71-4c50-a2b5-5ae478443ade
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.