PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysing the performance of H5 inverters in a photovoltaic system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza pracy falowników H5 w instalacji fotowoltaicznej
Języki publikacji
EN
Abstrakty
EN
In this paper, a simulation study on H5 topology is presented. H5 topology is a commonly used inverter in photovoltaic (PV) systems because it is cost-effective, simple, and highly efficient. The study compares the performance of H4 topology, H5 topology, and an improved version of H5 topology in terms of leakage current. The power device was subjected to Unipolar Sinusoidal Pulse Width Modulation (SPWM) technique to determine the overall operation within a switching frequency range of 2 kHz to 20 kHz. The input system utilized a PV Matlab/Simulink model that specified a maximum power of 213.15 Watt and Open Circuit Voltage (Voc) of 36.3 V. The improved H5 topology demonstrated a significant reduction in leakage current, measuring 0.015 A compared to the conventional H5 topology's 0.02 A.
W artykule przedstawiono badanie symulacyjne topologii H5. Topologia H5 jest powszechnie stosowanym falownikiem w systemach fotowoltaicznych (PV), ponieważ jest opłacalna, prosta i wysoce wydajna. Badanie porównuje wydajność topologii H4, topologii H5 i ulepszonej wersji topologii H5 pod względem prądu upływu. Urządzenie zasilające zostało poddane technice jednobiegunowej sinusoidalnej modulacji szerokości impulsu (SPWM) w celu określenia ogólnej pracy w zakresie częstotliwości przełączania od 2 kHz do 20 kHz. System wejściowy wykorzystywał model PV Matlab/Simulink, który określał maksymalną moc 213,15 W i napięcie obwodu otwartego (Voc) 36,3 V. Ulepszona topologia H5 wykazała znaczne zmniejszenie prądu upływu, mierząc 0,015 A w porównaniu z konwencjonalną topologią H5 0,02A.
Rocznik
Strony
48--50
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Paya Besar Community College
  • Paya Besar Community College
  • Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang (UMP)
Bibliografia
  • 1. J. Jiang, S. Pan, J. Gong, F. Liu, X. Zha, and Y. Zhuang, “A Leakage Current Eliminated and Power Oscillation Suppressed Single-Phase Single-Stage Nonisolated Photovoltaic Grid-Tied Inverter and Its Improved Control Strategy”, IEEE Trans Power Electron, vol. 36, no. 6, pp. 6738–6749, Jun. 2021, doi: 10.1109/TPEL.2020.3035033.
  • 2. N. Attou, S.-A. Zidi, M. Khatir, and S. Hadjeri, “Grid-Connected Photovoltaic System”, 2020, pp. 101–107. doi: 10.1007/978-981-15-5444-5_13.
  • 3. M. Venkatesan, R. Rajeswari, and K. Keerthivasan, “A survey of single phase grid connected photovoltaic system” in IEEE Proceedings of the INternational Conference On Emerging Trends in Science Engineering and Technology: Recent Advancements on Science and Engineering Innovation, INCOSET 2012, Jul. 2014, pp. 404–408. doi: 10.1109/incoset.2012.6513941.
  • 4. T. K. S. Freddy, N. A. Rahim, W. P. Hew, and H. S. Che, “Comparison and analysis of single-phase transformerless grid-connected PV inverters”, IEEE Trans Power Electron, vol. 29, no. 10, pp. 5358–5369, 2014, doi: 10.1109/TPEL.2013.2294953.
  • 5. Soham Deshpande; N. R. Bhasme, “A review of topologies of inverter for grid connected PV systems”, IEEE, 2018.
  • 6. Ó. López, R. Teodorescu, F. Freijedo, and J. Dovalgandoy, “Leakage current evaluation of a singlephase transformerless PV inverter connected to the grid”, in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2007, pp. 907–912. doi: 10.1109/APEX.2007.357623.
  • 7. A. Adhikary and M. Shamim Anower, “Reduction of leakage current in a single phase transformerless grid connected PV system”, in 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0, ACMI 2021, Jul. 2021. doi: 10.1109/ACMI53878.2021.9528294.
  • 8. L. Wang, Y. Shi, Y. Shi, R. Xie, and H. Li, “Ground Leakage Current Analysis a Suppression in a 60-kW 5-Level T-Type Transformerless SiC PV Inverter”, IEEE Trans Power Electron, vol. 33, no. 2, pp. 1271–1283, Feb. 2018, doi: 10.1109/TPEL.2017.2679488.
  • 9. T. Kerekes, D. Sera, and L. Mathe, “Leakage current measurement in transformerless PV inverters” in Proceedings of the International Conference on Optimisation of Electrical and Electronic Equipment, OPTIM, 2012, pp. 887–892. doi: 10.1109/OPTIM.2012.6231835.
  • 10. M. H. Mondol, S. Prokash Biswas, M. K. Hosain, and M. Rafiqul Islam Sheikh, “An Improved Single Phase Transformerless H5 Inverter with Minimized Leakage Current”, in 3rd International Conference on Electrical, Computer and Telecommunication Engineering, ICECTE 2019, Dec. 2019, pp. 73–76. doi: 10.1109/ICECTE48615.2019.9303539
  • 11. M. N. H. Khan, M. Forouzesh, Y. P. Siwakoti, L. Li, T. Kerekes, and F. Blaabjerg, “Transformerless Inverter Topologies for Single-Phase Photovoltaic Systems: A Comparative Review”, IEEE J Emerg Sel Top Power Electron, vol. 8, no. 1, pp. 805–835, Mar. 2020, doi: 10.1109/JESTPE.2019.2908672
  • 12. T. Kerekes, R. Teodorescu, P. Rodríguez, G. Vázquez, and E. Aldabas, “A New high-efficiency single-phase transformerless PV inverter topology”, IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 184–191, Jan. 2011, doi: 10.1109/TIE.2009.2024092
  • 13. L. Zhou and F. Gao, “Low leakage current single-phase PV inverters with universal neutral-point-clamping method”, in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, May 2016, vol. 2016-May, pp. 410–416. doi: 10.1109/APEC.2016.7467905
  • 14. E. E. Ahsan, M. A. Shobug, M. M. H. Tanim, and M. H. Reza, “Harmonic distortion reduction of transformerless inverter’s output voltage using 5-Level Single-phase inverter and LCL filter”, in 2020 2nd International Conference on Advanced Information and Communication Technology, ICAICT 2020, Nov. 2020, pp. 251– 256. doi: 10.1109/ICAICT51780.2020.9333510.
  • 15. X. Guo, “A Novel CH5 Inverter for Single-Phase Transformerless Photovoltaic System Applications”, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 10, pp. 1197–1201, Oct. 2017, doi: 10.1109/TCSII.2017.2672779
  • 16. H. Albalawi and S. A. Zaid, “An H5 transformerless inverter for grid connected PV systems with improved utilization factor and a simple maximum power point algorithm”, Energies (Basel), vol. 11, no. 11, Nov. 2018, doi: 10.3390/en11112912
  • 17. H. Albalawi and S. A. Zaid, “An H5 transformerless inverter for grid connected PV systems with improved utilization factor and a simple maximum power point algorithm”, Energies (Basel), vol. 11, no. 11, Nov. 2018, doi: 10.3390/en11112912.
  • 18. B. Yang, W. Li, Y. Gu, W. Cui, and X. He, “Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system”, IEEE Trans Power Electron, vol. 27, no. 2, pp. 752–762, 2012, doi 10.1109/TPEL.2011.2160359.
  • 19. M. K. Islam, M. M. Rahman, and M. F. Rabbi, “Transformer less, lower THD and highly efficient inverter system”, in Proceedings of 2015 3rd International Conference on Advances in Electrical Engineering, ICAEE 2015, Jul. 2016, pp. 293–296. doi: 10.1109/ICAEE.2015.7506853
  • 20. T. Annamalai and K. Udhayakumar, “Simulation and analysis of various H-bridge inverter topologies employed in cascaded multilevel inverter”, in 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research, ICETIETR 2018, Nov. 2018. doi: 10.1109/ICETIETR.2018.8529034
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b579b0e-662c-4270-a06e-e2b0d0ffd7cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.