PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Estimates of current and future climate change in Belarus based on meteorological station data and the EURO-CORDEX-11 dataset

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study provides an assessment of the current and future changes (in terms of both direction and value) in air temperature, precipitation, snow, wind and their extremes over the territory of Belarus using information from 42 meteorological stations and 92 regional circulation model (RCM) simulations with the highest available horizontal resolution (EUR-11). Three representative concentration pathway scenarios, namely, RCP2.6, RCP4.5 and RCP8.5, are considered. Results demonstrate that in recent decades, temperature has increased over the territory of Belarus by 1.3°C, with the largest increase occurring during the cold season (2.1-2.3°C). Ensemble scenarios project further increases in air temperature in the current century by +0.5-1.5°C, +2.8°C, and +5.2°C under the RCP2.6, RCP4.5 and RCP8.5 scenarios, with the largest increase during the cold season under the RCP8.5 scenario. The annual means were observed to increase (insignificantly) by 5-7% and the summer precipitation extremes exhibited a 20-25% growth in recent decades. Moreover, dry conditions have intensified in Belarus, particularly during the growing season. Further increases in precipitation of 10-15% across Belarus are projected to occur in all seasons under the RCP4.5 and RCP8.5 scenarios. Simulation models predict greater increases in single day rainfall events compared to their multiday precipitation counterparts. The greatest increases in maximal dry period length (by 1-2) are expected to occur in summer and autumn. The models project the general decrease in snowfall across Belarus to continue into the current century, with a reduction in snow precipitation days of 10-30 days. Despite the reduced wind strength (by 0.9-1.0 m·s -1 ) since the 1970s over the territory of Belarus, the ensemble model reveals slight nonsignificant changes in seasonal and annual wind strengths until the end of the century. Significant changes of 1-3 days under varying directions of the wind regime were observed for days with a strong breeze and storms.
Twórcy
  • Institute for Nature Management, National Academy of Sciences, Akademycheskaya 27, 002272 Minsk, Belarus
autor
  • Institute for Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Bibliografia
  • Alisov B.P., 1936, Geographical types of climates, Meteorology and Hydrology, (in Russian), 1, 16-25.
  • Balabukh V., Lavrynenko O., Bilaniuk V., Mykhnovych A., Pylypovych O., 2018a, Extreme weather events in Ukraine: Occurrence and changes, [in:] Extreme Weather, IntechOpen, 85-106, DOI: 10.5772/intechopen.77306.
  • Balabukh V., Malytska L., Yagodinets S., Lavrynenko O., 2018b, Projections of changes climatic mean and extreme parameters of thermal regime by the middle of the 21st century in Ukraine, Nature Management, (in Russian), 1, 97-113.
  • Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F., 2018, Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific Data, 5 (1), DOI: 10.1038/sdata.2018.214.
  • Belhydromet, 2019, State climate cadastre of the Republic of Belarus, technical report.
  • Boychenko S., Voloshchuk V., Movchan Y., Serdjuchenko N., Tkachenko V., Tyshchenko O., Savchenko S., 2016, Features of climate change on Ukraine: scenarios, consequences for nature and agroecosystems, Proceedings of the National Aviation University, 69 (4), 96-113, DOI: 10.18372/2306-1472.69.11061.
  • Bukantis A., Rimkus E., Kazys J., 2010, Heavy precipitation events in Lithuania, [in:] 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM), Abstracts.
  • C3S, 2020, European state of the climate 2019, Climate Bulletin, Copernicus Climate Change Service, available online at https://climate.copernicus.eu/ESOTC/2019 (data access 07.07.2021).
  • Christensen J., Hewitson B., Busuioc A., 2007, Regional climate projections, [in:] Climate Change 2007: The Physical Science Basis, IPCC, available online at https://www.ipcc.ch/report/ar4/wg1/regional-climate-projections/ (data access 07.07.2021).
  • Çzernecki B., Miętus M., 2017, The thermal seasons variability in Poland, 1951-2010, Theoretical and Applied Climatology, 127 (1), 481-493, DOI: 10.1007/s00704-015-1647-z.
  • Danilovich I., Kvach A., Zhuravovich L., Piskunovich N., 2021, Current changes of precipitation in warm season and streamflow formation during low-flow period over territory of Belarus, Nature Management, (in Russian), 1, 22-33.
  • Danilovich I.S., Geyer B., 2018, Assessment of possible future changes of air temperature and rainfall by decades of the current century for the territory of Belarus on the basis of numerical modelling, Natural Resources, (in Russian), 1, 102-114.
  • Danilovich I.S., Melnik V.I., Geyer B., 2020, The current climate changes in Belarusian Polesje region: factors, consequences, projections, Journal of the Belarusian State University, (in Russian), DOI: 10.33581/2521-6740-2020-1-3-13.
  • Flato G., Marotzke J., Abiodun B., Braconnot P., Chou S.C., Collins W., Cox P., Driouech F., Emori S., Eyring V., Forest C., Gleckler P., Guilyardi E., Jakob C., Kattsov V., Reason C., Rummukainen M., 2013, Evaluation of climate models, [in:] Climate Change 2013 - The Physical Science Basis, IPCC, DOI: 10.1017/CBO9781107415324.020.
  • Fotruniak K., Kożuchowski K., Żmudzka E., 2001, Trendy i okresowość zmian temperatury powietrza w Polsce w drugiej połowie XX wieku, Przegląd Geofizyczny, 46 (4), 283-303.
  • Frich P., Alexander L., Della-Marta P., Gleason B., Haylock M., Klein T., Peterson T., 2002, Observed coherent changes in climatic extremes during second half of the twentieth century, Climate Research, 19, 193-212, DOI: 10.3354/cr019193.
  • Govorkova V., Kattsov V., Melesko V., Pavlova T., Shkolnik I., 2008, Climate of Russia in 21st century. Part 2. Evaluation of validity of CMIP3 atmosphere-ocean general circulation models for projecting climate changes over Russia, Russian Meteorology and Hydrology, 32 (8), 5-19.
  • HELCOM, 2007, Climate change in the Baltic Sea area HELCOM thematic assessment in 2007, Baltic Sea Environment Proceedings, 111, 54 pp.
  • Jaagus J., Briede A., Rimkus E., Sepp M., 2018, Changes in precipitation regime in the Baltic countries in 1966-2015, Theoretical and Applied Climatology, 131, 433-443, DOI: 10.1007/s00704-016-1990-8.
  • Jacob D., Petersen J., Eggert B., Alias A., Christensen O.B., Bouwer L.M., Braun A., Colette A., Déqué M., Georgievski G., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Hempelmann N., Jones C., Keuler K., Kovats S., Kröner N., Kotlarski S., Kriegsmann A., Martin E., van Meijgaard E., Moseley C., Pfeifer S., Preuschmann S., Radermacher C., Radtke K., Rechid D., Rounsevell M., Samuelsson P., Somot S., Soussana J.-F., Teichmann C., Valentini R., Vautard R., Weber B., Yiou P., 2014, EURO-CORDEX: new high-resolution climate change projections for European impact research, Regional Environmental Change, 14 (2), 563-578, DOI: 10.1007/s10113-013-0499-2.
  • Kattsov V.M., Shkolnik I.M., Efimov S.V., 2017, Climate change projections in Russian regions: The detailing in physical and probability spaces, Russian Meteorology and Hydrology, 42 (7), 452-460, DOI: 10.3103/S1068373917070044.
  • Klavins M., Briede A., Rodinov V., Kokorite I., Frisk T., 2002, Long-term changes of the river runoff in Latvia, Boreal Environment Research, 7, 447-456.
  • Kokorev V., Anisimov O., 2013, Construction of an optimized ensemble of climate projections to assess the impact of climate change in Russia, [in:] Problems in environmental modelling and monitoring of ecosystems, (in Russian), 131-153.
  • Kotlarski S., Keuler K., Christensen O.B., Colette A., Déqué M., Gobiet A., Goergen K., Jacob D., Lüthi D., van Meijgaard E., Nikulin G., Schär C., Teichmann C., Vautard R., Warrach-Sagi K., Wulfmeyer V., 2014, Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble, Geoscientific Model Development, 7, 1297-1333, DOI: 10.5194/gmd-7-1297-2014.
  • Kożuchowski K., 2011, Klimat Polski. Nowe spojrzenie, Wydawnictwo Naukowe PWN, Warszawa, 296 pp.
  • Kożuchowski K., Żmudzka E., 2001, Ocieplenie w Polsce: skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku, Przegląd Geofizyczny, 46 (1-2), 81-90.
  • Kriauciuniene J., Meilutyte-Barauskiene D., Kažys E.R.J., Vincevicius A., 2008, Climate change impact on hydrological processes in Lithuanian Nemunas river basin, Baltica, 21(1-2), 51-61.
  • Kryshnyakova O.S., Malinin V.N., 2008, Peculiarities of climate warming of the European territory of Russia in modern conditions, Society. Environment. Development, 7 (2), 115-124.
  • Loginov V., 2008, Global and regional climate changes: drivers and consequences, Minsk, Terra-System, (in Russian), 494 pp.
  • Loginov V., Mikutskiy V., Kajdan E., 2000, A selection of atmospheric circulation model for regional forecast of climate change, (in Russian), Nature Management, 6, 30-31.
  • Lysenko S.A., Chernyshev V.D., Kalyada V.V., 2019, A grid archive of meteorological data of the Republic of Belarus and the opportunity of its use in research of spatial-temporal peculiarities of climate changes, Nature Management, (in Russian), 1, 17-28.
  • Meleshko V., Kattsov V., Govorkova V., Sporyshev P., Shkol’nik I., Shneerov B., 2008, Climate of Russia in the 21st century. Part 3. Future climate changes calculated with an ensemble of coupled atmosphere-ocean general circulation cmip3 models, Russian Meteorology and Hydrology, 33 (9), 541-552.
  • Melnik V., Buyakov I., Chernyshev V., 2019, Changes in the amount and type of atmospheric precipitation during the cold period on the territory of Belarus in the conditions of modern climate warming, (in Russian), Nature Management, 2, 44-51.
  • Melnik V., Danilovich I., Kuleshova I., Komarovskaya E., Melchakova N., 2018, Assessment of agroclimatic resources of the territory of Belarus during 1989-2015, (in Russian), Natural Resources, 2, 88-101.
  • Melnik V., Sokolovskaya Y.A., Komarovskaya E., 2017, Possible changes of climatic and agroclimatic characteristics in the 21st century over territory of Belarus and their influence on agriculture, Natural Resources, (in Russian), 2, 118-125.
  • Met Office, 2010, Climate: Observations, projections and impacts. Russia, Report of Met Office Hadley Centre, 138 pp.
  • Metzger M.J., Bunce R.G.H., Jongman R.H.G., Mücher C.A., Watkins J.W., 2005, A climatic stratification of the environment of Europe, Global Ecology and Biogeography, 14 (6), 549-563, DOI: 10.1111/j.1466-822X.2005.00190.x.
  • Mezghani A., Dobler A.A., Haugen J.J.E., 2016, CHASE-PL climate projections: 5-km gridded daily precipitation and temperature dataset (CPLCP-GDPT5).
  • Ministry Latvia, 2006, Fourth National Communication of the Republic of Latvia to the United Nations Framework Convention on Climate Change, Ministry of the Environment of the Republic of Latvia, 160 pp.
  • Mokhov I., Eliseev A., 2012, Modeling of the global climatic changes in XX-XXIII centuries under new scenarios of anthropogenic forcing (rcp), Proceeding of Russian Academy of Sciences, 443 (6), 732-736.
  • Mokhov I.I., 2008, Possible regional consequences of global climate changes, Russian Journal of Earth Sciences, 10 (ES6005), DOI: 10.2205/2007ES000228.
  • Moss R.H., Edmonds J.A., Hibbard K.A., Manning M.R., Rose S.K., van Vuuren D.P., Carter T.R., Emori S., Kainuma M., Kram T., Meehl G.A., Mitchell J.F.B., Nakicenovic N., Riahi K., Smith S.J., Stouffer R.J., Thomson A.M., Weyant J.P., Wilbanks T.J., 2010, The next generation of scenarios for climate change research and assessment, Nature, 463 (7282), 747-756, DOI: 10.1038/nature08823.
  • Nikulin G., Kjellström E., Hansson U., Strandberg G., Ullerstig A., 2011, Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations, Tellus A: Dynamic Meteorology and Oceanography, 63 (1), 41-55, DOI: 10.1111/j.1600-0870.2010.00466.x.
  • Partasenok I., Geyer B., Melnik V., 2015, Assessment of climatic changes in Belarus according to the EURO-CORDEX climate models, (in Russian), Collection of articles of the Hydrometeorological Research Center of the Russian Federation, 358, 99-111.
  • Partasenok I.S., Groisman P.Y., Chekan G.S., Melnik V.I., 2014, Winter cyclone frequency and following freshet streamflow formation on the rivers in Belarus, Environmental Research Letters, 9 (9), 095005, DOI: 10.1088/1748-9326/9/9/095005.
  • Pavlova V.N., 2013, Agroclimatic resources and agricultural productivity in Russia according to the new climate scenarios in the xxi century, (in Russian), Proceedings of the Main Geophysical Observatory named after A.I. Voyekov, 569, 20-37.
  • Pinskwar I., Chorynski A., Graczyk D., Kundzewicz Z.W., 2019, Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990m Theoretical and Applied Climatology, 135 (1), 773-787, DOI: 10.1007/s00704-018-2372-1.
  • Podgornaya E., Melnik V., Komarovskaya E., 2015, The peculiarities of climate change over territory of Belarus during last decades, (in Russian), The Proceedings of the Hydrometeorological Research Center of the Russian Federation, 358, 112-120.
  • Reckermann M., Langner J., Omstedt A., von Storch H., Keevallik S., Schneider B., Arheimer B., Meier H.E.M., Hünicke B., 2011, BALTEX - an interdisciplinary research network for the Baltic Sea region, Environmental Research Letters, 6 (4), 045205, DOI: 10.1088/1748-9326/6/4/045205.
  • Republic of Lithuania, 2010, Lithuania's Fifth National Communication under the United Nations Framework Convention on Climate Change, 134 pp.
  • Rimkus E., Kažys J., Butkute S., Gecaite I., 2014, Snow cover variability in Lithuania over the last 50 years and its relationship with large-scale atmospheric circulation, Boreal Environment Research, 19, 337-351.
  • Roshydromet, 2008, Assessment report on climate change and its consequences in Russian Federation. General Summary, Moscow.
  • Roshydromet, 2014, Second Roshydromet assessment report on the climate change and its consequences in Russian Federation, (in Russian), Moscow.
  • Shevchenko O., Snizhko S., 2019, Climate change and Ukrainian cities: Manifestations and projections on 21st century based on RCPscenatios, (in Ukrainian), Bulletin of Taras Shevchenko National University of Kyiv, 2 (75), 11-18, DOI: 10.17721/1728-2721.2019.75.2.
  • Shkolnik I., Meleshko V., Kattsov V., 2006, MOPossible climate changes in European Russia and neighboring countries by the late 21st century: calculation with the MGO regional model, Russian Meteorology and Hydrology, 3, 1-10.
  • Siegmund P., Abermann J., Baddour O., Canadell P., Cazenave A., Derksen C., Garreau A., Howell S., Huss M., Isensee K., Kennedy J., Mottram R., Nitu R., Ramasamy S., Schoo K., Sparrow M., Tarasova O., Trewin B., Ziese M., 2019, The global climate in 2015-2019, WMO, available online at https://library.wmo.int/doc_num.php?explnum_id=9936 (data access 07.07.2021).
  • Snezhko S., Obodovsky A., Lopukh P., 2017, Long-term forecast of mountain and lowland runoff to assess their hydropower potential (on the example of the Ukrainian Carpathians and Belarus), (in Russian), Journal of the Belarusian State University. Geography and Geology, 1, 50-61.
  • Summary Report, 2017, Climate change scenarios for Latvia, Project “Development of Proposal for National Adaptation Strategy, Including Identification of Scientific Data, Measures for Adapting to Changing Climate, Impact and Cost Evaluation”, Riga, 17 pp.
  • Szwed M., 2019, Variability of precipitation in Poland under climate change, Theoretical and Applied Climatology, 135 (3), 100301015, DOI: 10.1007/s00704-018-2408-6.
  • Szwed M., Pinskwar I., Kundzewicz Z.W., Graczyk D., Mezghani A., 2017, Changes of snow cover in Poland, Acta Geophysica, 65 (1), 65-76, DOI: 10.1007/s11600-017-0007-z.
  • Taylor K.E., Stouffer R.J., Meehl G.A., 2011, An overview of CMIP5 and the experiment design, Bulletin of the American Meteorological Society, 93 (4), 485-498, DOI: 10.1175/BAMS-D-11-00094.1.
  • Tripolskaja L., Pirogovskaja G., 2013, Impact of climate variability in Lithuania and Belarus on atmospheric precipitation infiltration: lysimetric study, Zemdirbyste-Agriculture, 100 (4), 369-376, DOI: 10.13080/z-a.2013.100.047.
  • Van Den Besselaar E.J.M., Klein Tank A.M.G., Van Der Schrier G., Abass M.S., Baddour O., Van Engelen A.F., Freire A., Hechler P., Laksono B.I., Jilderda R., Foamouhoue A.K., Kattenberg A., Leander R., Güingla R.M., Mhanda A.S., Nieto J.J., Suwondo A., Swarinoto Y.S., Verver G., 2015, International climate assessment & dataset: Climate services across borders, Bulletin of the American Meteorological Society, 96 (1), 16-21, DOI: 10.1175/BAMS-D-13-00249.1.
  • Van Der Linden P., Mitchell J., 2009, Ensembles: Climate change and its impacts: Summary of research and results from the ensembles project, technical report, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK.
  • Šarauskiene D., Akstinas V., Kriauciuniene J., Jakimavicius D., Bukantis A., Kažys J., Povilaitis A., Ložys L., Kesminas V., Virbickas T., Pliuraite V., 2018, Projection of Lithuanian river runoff, temperature and their extremes under climate change, Hydrology Research, 49 (2), 344-362, DOI: 10.2166/nh.2017.007.
  • WMO, 2017, WMO Guidelines on the Calculation of Climate Normal, WMO-No. 1203, available at https://library.wmo.int/doc_num.php?explnum_id=4166 (data access 07.07.2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9b2743eb-40f6-463d-a220-6bae7979045f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.