PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomimetic scaffolds based on chitosan in bone regeneration. A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chitosan (CS) is a polysaccharide readily used in tissue engineering due to its properties: similarity to the glycosaminoglycans present in the body, biocompatibility, non-toxicity, antibacterial character and owing to the fact that its degradation that may occur under the influence of human enzymes generates non-toxic products. Applications in tissue engineering include using CS to produce artificial scaffolds for bone regeneration that provide an attachment site for cells during regeneration processes. Chitosan can be used to prepare scaffolds exclusively from this polysaccharide, composites or polyelectrolyte complexes. A popular solution for improving the surface properties and, as a result enhancing cell-biomaterial interactions, is to coat the scaffold with layers of chitosan. The article focuses on a polysaccharide of natural origin – chitosan (CS) and its application in scaffolds in tissue engineering. The last part of the review focuses on bone tissue and interactions between cells and chitosan after implantation of a scaffold and how chitosan’s structure affects bone cell adhesion and life processes.
Rocznik
Strony
305–--330
Opis fizyczny
Bibliogr. 221 poz., rys., tab.
Twórcy
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
  • 1. Aarden E.M., Nijweide P.J., Burger E.H., 1994. Function of osteocytes in bone. J. Cell. Biochem., 55, 287–299. DOI: 10.1002/jcb.240550304.
  • 2. Abarrategi A., Lópiz-Morales Y., Ramos V., Civantos A., López-Duŕn L., Marco F., López-Lacomba J.L., 2010. Chitosan scaffolds for osteochondral tissue regeneration. J. Biomed. Mater. Res. Part A, 95A, 1132–1141. DOI: 10.1002/jbm.a.32912.
  • 3. Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Zabermawi N.M., Arif M., Batiha G.E., Khafaga A.F., Abd El-Hakim Y. M., Al-Sagheer A.A., 2020. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 164, 2726–2744. DOI: 10.1016/j.ijbiomac.2020.08.153.
  • 4. Aday S., Gümüşderelioğlu M., 2009. Bone-like apatite-coated chitosan scaffolds: Characterization and osteoblastic activity. Polym. Compos., 31, 1418–1426. DOI: 10.1002/pc.20927.
  • 5. Ahmad S.I., Ahmad R., Khan M.S., Kant R., Shahid S., Gautam L., Hasan G.M., Hassan M.I., 2020. Chitin and its derivatives: Structural properties and biomedical applications. Int. J. Biol. Macromol., 164, 526–539. DOI: 10.1016/j.ijbiomac.2020.07.098.
  • 6. Akmammedov R., Huysal M., Isik S., Senel M., 2018. Preparation and characterization of novel chitosan/zeolite scaffolds for bone tissue engineering applications. Int. J. Polym. Mater. Polym. Biomater., 67, 110–118. DOI: 10. 1080/00914037.2017.1309539.
  • 7. Albrektsson T., Johansson C., 2001. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J., 10, Suppl. 2, S96–S101. DOI: 10.1007/s005860100282.
  • 8. Ali A., Hasan A., Negi Y. S., 2022. Effect of carbon based fillers on xylan/chitosan/nano-HAp composite matrix for bone tissue engineering application. Int. J. Biol. Macromol., 197, 1–11. DOI: 10.1016/j.ijbiomac.2021.12.012.
  • 9. Al-Nabulsi A., Osaili T., Sawalha A., Olaimat A.N., Albiss B.A., Mehyar G., Ayyash M., Holley R., 2020. Antimicrobial activity of chitosan coating containing ZnO nanoparticles against E. coli O157:H7 on the Surface of white brined cheese. Int. J. Food Microbiol., 334, 108838. DOI: 10.1016/j.ijfoodmicro.2020.108838.
  • 10. Alonzo M., Alvarez Primo F., Anil Kumar S., Mudloff J. A., Dominguez E., Fregoso G., Ortiz N., Weiss W.M., Joddar B., 2021. Bone tissue engineering techniques advances and scaffolds for treatment of bone defects. Curr. Opin. Biomed. Eng., 17, 100248. DOI: 10.1016/j.cobme.2020.100248.
  • 11. Amir L.R., Suniarti D.F., Utami S., Abbas B., 2014. Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res., 358, 407–415. DOI: 10.1007/s00441-014-1938-1.
  • 12. Anselme K., 2000. Osteoblast adhesion on biomaterials. Biomaterials, 21, 667–681. DOI: 10.1016/S0142-9612(99) 00242-2.
  • 13. Antunes J.C., Pereira C.L., Molinos M., Ferreira-Da-Silva F., Dessi M., Gloria A., Ambrosio L., Gonca ̧lves R.M., Barbosa M.A., 2011. Layer-by-layer self-assembly of chitosan and poly(𝛾-glutamic acid) into polyelectrolyte complexes. Biomacromolecules, 12, 4183–4195. DOI: 10.1021/bm2008235.
  • 14. Aravamudhan A., Ramos D.M., Nada A.A., Kumbar S.G., 2014. Chapter 4 – Natural polymers: polysaccharides and their derivatives for biomedical applications, In: Kumbar S.G., Laurencin C.T., Deng M. (Eds.), Natural and synthetic biomedical polymers. Elsevier Inc., 67-89. DOI: 10.1016/B978-0-12-396983-5.00004-1.
  • 15. Arbia W., Arbia L., Adour L., Amrane A., 2013. Chitin extraction from crustacean shells using biological methods – A review. Food Technol. Biotechnol., 51, 12–25.
  • 16. Baghaei M., Tekie F.S.M., Khoshayand M.R., Varshochian R., Hajiramezanali M., Kachousangi M.J., Dinarvand R., Atyabi F., 2021. Optimization of chitosan-based polyelectrolyte nanoparticles for gene delivery using design of experiment: in vitro and in vivo study. Mater. Sci. Eng.,𝐶, 118, 111036. DOI: 10.1016/j.msec.2020.111036.
  • 17. Bakshi P.S., Selvakumar D., Kadirvelu K., Kumar N.S., 2020. Chitosan as an environment friendly biomateriał – a review on recent modifications and applications. Int. J. Biol. Macromol., 150, 1072–1083. DOI: 10.1016/j.ijbiomac.2019.10.113.
  • 18. Barbosa J.N., Amaral I.F., Águas A.P., Barbosa M.A., 2010. Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J. Biomed. Mater. Res. Part A, 93A, 20–28. DOI: 10.1002/jbm.a.32499.
  • 19. Bastiaens L., Soetemans L., D’Hondt E., Elst K., 2019. Sources of chitin and chitosan and their isolation. In: van den Broek L.A.M., Boeriu C.G. (Eds.), Chitin and chitosan: Properties and applications. 1–34. DOI: 10.1002/9781119450467.ch1.
  • 20. Bellahcène A., Castronovo V., Ogbureke K.U.E., Fisher L.W., Fedarko N.S., 2008. Small integrin-binding lig- and N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat. Rev. Cancer, 8, 212–226. DOI: 10.1038/nrc2345.
  • 21. Beşkardeş I.G., Hayden R.S., Glettig D.L., Kaplan D.L., Gümüşderelioğlu M., 2017. Bone tissue engineering with scaffold-supported perfusion co-cultures of human stem cell-derived osteoblasts and cell line-derived osteoclasts. Process Biochem., 59 B, 303–311. DOI: 10.1016/j.procbio.2016.05.008.
  • 22. Bhowmick A., Jana P., Pramanik N., Mitra T., Banerjee S.L., Gnanamani A., Das M., Kundu P.P., 2016. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydr. Polym., 151, 879–888. DOI: 10.1016/j.carbpol.2016.06.034.
  • 23. Birch N.P., Schiffman J.D., 2014. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir, 30, 3441–3447. DOI: 10.1021/la500491c.
  • 24. Bombaldi de Souza F.C., Bombaldi de Souza R.F., Drouin B., Mantovani D., Moraes Â.M., 2019. Comparative study on complexes formed by chitosan and different polyanions: Potential of chitosan-pectin biomaterials as scaffolds in tissue engineering. Int. J. Biol. Macromol., 132, 178–189. DOI: 10.1016/j.ijbiomac.2019.03.187.
  • 25. Bonewald L.F., 2010. Chapter 313 – Cell–cell and cell–matrix interactions in bone. In: Bradshaw R.A., Dennis E.A. (Eds.), Handbook of Cell Signaling (Second Edition), 2647–2662. Elsevier. DOI: 10.1016/B978-0-12-374145-5.00313-2.
  • 26. Bosco R., van den Beucken J., Leeuwenburgh S., Jansen J., 2012. Surface engineering for bone implants: A trend from passive to active surfaces. Coatings, 2, 95–119. DOI: 10.3390/coatings2030095.
  • 27. Bossard M.J., Tomaszek T.A., Thompson S.K., Amegadzie B.Y., Hanning C.R., Jones C., Kurdyla J.T., McNulty D.E., Drake F.H., Gowen M., Levyi M.A., 1996. Proteolytic activity of human osteoclast cathepsin K: Expression purification activation and substrate identification. J. Biol. Chem., 271, 12517–12524. DOI: 10.1074/jbc.271.21.12517.
  • 28. Brown J.L., Kumbar S.G., Laurencin C.T., 2013. Chapter II.6.7 – Bone tissue engineering, In: Ratner B. D., Hoffman A.S. (Eds.), Biomaterials science: An introduction to materials. Third edition, Elsevier, 1194-1214. DOI: 10.1016/B978-0-08-087780-8.00113-3.
  • 29. Budnicka M., Gadomska-Gajadhur A., Ruśkowski P., 2018. Wytwarzanie polimerowych substytutów kości. Tworzywa Sztuczne w Przemyśle, 43(1), 56–61.
  • 30. Budnicka M., Szymaniak M., Gadomska-Gajadhur A.A., 2018. Metody modyfikacji powierzchni implantów polimerowych do regeneracji tkanki kostnej, In: Pilarz Ł.B. (Ed.), Wybrane rozwiązania technologiczne w medycynie. Wydawnictwo Naukowe TYGIEL sp. z o.o., Lublin.
  • 31. Budnicka M., Szymaniak M., Kołbuk D., Ruśkowski P., Gadomska-Gajadhur A., 2020. Biomineralization of poly-l-lactide spongy bone scaffolds obtained by freeze-extraction method. J. Biomed. Mater. Res. Part B, 108, 868–879. DOI: 10.1002/jbm.b.34441.
  • 32. Cao S., Zhao Y., Hu Y., Zou L., Chen J., 2020. New perspectives: In-situ tissue engineering for bone repair scaffold. Composites, Part B, 202, 108445. DOI: 10.1016/j.compositesb.2020.108445.
  • 33. Cao X., Wang J., Liu M., Chen Y., Cao Y., Yu X., 2015. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering. Front. Mater. Sci., 9, 405–412. DOI: 10.1007/s11706-015-0317-5.
  • 34. Cavalcanti-Adam E.A., Aydin D., Hirschfeld-Warneken V.C., Spatz J.P., 2008. Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J., 2, 276–285. DOI: 10.2976/1.2976662.
  • 35. Chan B.P., Leong K.W., 2008. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 17, 467–479. DOI: 10.1007/s00586-008-0745-3.
  • 36. Chen E., Yang L., Ye C., Zhang W., Ran J., Xue D., Wang Z., Pan Z., Hu Q., 2018. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomater., 73, 377–387. DOI: 10.1016/j.actbio.2018.04.027.
  • 37. Chen S., Zhao X., Du C., 2018. Macroporous poly (l-lactic acid)/chitosan nanofibrous scaffolds through cloud point thermally induced phase separation for enhanced bone regeneration. Eur. Polym. J., 109, 303–316. DOI: 10.1016/j.eurpolymj.2018.10.003.
  • 38. Chicatun F., Griffanti G., McKee M.D., Nazhat S.N., 2017. 8 – Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering, In: Ambrosio L. (Ed.) Biomedical composites. 2nd edition, Woodhead Publishing, 163–198. DOI: 10.1016/B978-0-08-100752-5.00008-1.
  • 39. Cirillo M., Martelli G., Boanini E., Rubini K., di Filippo M., Torricelli P., Pagani S., Fini M., Bigi A., Giacomini D., 2021. Strontium substituted hydroxyapatite with 𝛽-lactam integrin agonists to enhance mesenchymal cells adhesion and to promote bone regeneration. Colloids Surf., B, 200, 111580. DOI: 10.1016/j.colsurfb.2021.111580.
  • 40. Coimbra P., Ferreira P., de Sousa H.C., Batista P., Rodrigues M.A., Correia I.J., Gil M.H., 2011. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int. J. Biol. Macromol., 48, 112–118. DOI: 10.1016/j.ijbiomac.2010.10.006.
  • 41. Comelles J., Estévez M., Martínez E., Samitier J., 2010. The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion. Nanomed. Nanotechnol. Biol. Med., 6, 44–51. DOI: 10.1016/j.nano.2009.05.006.
  • 42. Curran J.M., Chen R., Hunt J.A., 2005. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials, 26, 7057–7067. DOI: 10.1016/j.biomaterials.2005. 05.008.
  • 43. Curran J.M., Chen R., Hunt J.A., 2006. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials, 27, 4783–4793. DOI: 10.1016/j.biomaterials.2006.05.001.
  • 44. Dan Y., Liu O., Liu Y., Zhang Y. Y., Li S., Feng X., Shao Z., Yang C., Yang S. H., Hong J.-b., 2016. Development of novel biocomposite scaffold of chitosan-gelatin/nanohydroxyapatite for potential bone tissue engineering applications. Nanoscale Res. Lett., 11, 487 (2016). DOI: 10.1186/s11671-016-1669-1.
  • 45. Danilchenko S.N., Kalinkevich O.V., Pogorelov M.V., Kalinkevich A.N., Sklyar A.M., Kalinichenko T.G., Ilyashenko V.Y., Starikov V.V., Bumeyster V.I., Sikora V.Z., Sukhodub L.F., 2011. Characterization and in vivo evaluation of chitosan-hydroxyapatite bone scaffolds made by one step coprecipitation method. J. Biomed. Mater. Res., 96A, 639–647. DOI: 10.1002/jbm.a.33017.
  • 46. Dash M., Samal S.K., Douglas T.E.L., Schaubroeck D., Leeuwenburgh S.C., van der Voort P., Declercq H.A., Dubruel P., 2017. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. J. Tissue Eng. Regen. Med., 11, 1500–1513. DOI: 10.1002/term.2048.
  • 47. Datta H.K., Ng W.F., Walker J.A., Tuck S.P., Varanasi S.S., 2008. The cell biology of bone metabolism. J. Clin. Pathol., 61, 577–587. DOI: 10.1136/jcp.2007.048868.
  • 48. de Vasconcelos C.L., Bezerril P.M., dos Santos D.E.S., Dantas T.N.C., Pereira M.R., Fonseca J.L.C., 2006. Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules, 7, 1245–1252. DOI: 10.1021/bm050963w.
  • 49. Deb P., Deoghare A.B., Borah A., Barua E., das Lala S., 2018. Scaffold development using biomaterials: a review. Mater. Today: Proc., 5, 12909–12919. DOI: 10.1016/j.matpr.2018.02.276.
  • 50. Dhiman H.K., Ray A.R., Panda A.K., 2005. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials, 26, 979–986. DOI: 10.1016/j.biomaterials.2004. 04.012.
  • 51. Di Martino A., Sittinger M., Risbud M.V., 2005. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26, 5983–5990. DOI: 10.1016/j.biomaterials.2005.03.016.
  • 52. Dirckx N., Moorer M.C., Clemens T.L., Riddle R.C., 2019. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol., 15, 651–665. DOI: 10.1038/s41574-019-0246-y.
  • 53. Doan C.T., Tran T.N., Nguyen V.B., Vo T.P.K., Nguyen A.D., Wang S.L., 2019. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol., 131, 706–715. DOI: 10.1016/j.ijbiomac.2019.03.117.
  • 54. Duan C., Meng X., Meng J., Khan Md. I. H., Dai L., Khan A., An X., Zhang J., Huq T., Ni Y., 2019. Chitosan as a preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. J. Bioresour. Bioprod., 4, 11–21. DOI: 10.21967/jbb.v4i1.189.
  • 55. Ducy P., Schinke T., Karsenty G., 2000. The osteoblast: A sophisticated fibroblast under central surveillance. Science, 289, 1501–1504. DOI: 10.1126/science.289.5484.1501.
  • 56. El-Sayed W.N., Alkabli J., Aloqbi A., Elshaarawy R.F.M., 2021. Optimization enzymatic degradation of chitosan into amphiphilic chitooligosaccharides for application in mitigating liver steatosis and cholesterol regulation. Eur. Polym. J., 153, 110507. DOI: 10.1016/j.eurpolymj.2021.110507.
  • 57. Erickson C.B., Payne K.A., 2019. Inductive signals and progenitor fates during osteogenesis, In: Reis R.L. (Ed.), Encyclopedia of tissue engineering and regenerative medicine, 395–404. Academic Press. DOI: 10.1016/B978- 0-12-801238-3.65483-1.
  • 58. Florencio-Silva R., Sasso G.R.S., Sasso-Cerri E., Simões M. J., Cerri P.S., 2015. Biology of bone tissue: structure function and factors that influence bone cells. BioMed Res. Int., 2015, 421746. DOI: 10.1155/2015/421746.
  • 59. Foss B.L., Ghimire N., Tang R., Sun Y., Deng Y., 2015. Bacteria and osteoblast adhesion to chitosan immobilized titanium surface: A race for the surface. Colloids Surf., B, 134, 370–376. DOI: 10.1016/j.colsurfb.2015.07.014.
  • 60. Gadomska-Gajadhur A., Łojek K., Szymaniak M., Gadomska A., 2018. Materiały porowate do regeneracji tkanki chrzęstnej i kostnej. Wyroby Medyczne, 3, 8, 51–58.
  • 61. Gallyamov M.O., Chaschin I.S., Bulat M.V., Bakuleva N.P., Badun G.A., Chernysheva M.G., Kiselyova O.I., Khokhlov A.R., 2018. Chitosan coatings with enhanced biostability in vivo. J. Biomed. Mater. Res. Part B, 106B, 270–277. DOI: 10.1002/jbm.b.33852.
  • 62. García Cruz D.M., Gomes M., Reis R.L., Moratal D., Salmerón-Sánchez M., Gómez Ribelles J.L., Mano J.F., 2010. Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. J. Biomed. Mater. Res., 95A, 1182–1193. DOI: 10.1002/jbm.a.32906.
  • 63. Garnero P., Delmas P.D., 1997. 4 Bone markers. Baillière’s Clin. Rheumatol., 11, 517–537. DOI: 10.1016/S0950-3579(97)80018-0.
  • 64. Gennari A., de la Rosa J.M.R., Hohn E., Pelliccia M., Lallana E., Donno R., Tirella A., Tirelli N., 2019. The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology cell uptake and silencing efficiency. Beilstein J. Nanotechnol., 10, 2594–2608. DOI: 10.3762/bjnano.10.250.
  • 65. Gentili C., Cancedda R., 2009. Cartilage and bone extracellular matrix. Curr. Pharm. Des., 15, 1334–1348. DOI: 10.2174/138161209787846739.
  • 66. Giannoudis P.V., Dinopoulos H., Tsiridis E., 2005. Bone substitutes: An update. Injury, 36, S20–S27. DOI: 10.1016/j.injury.2005.07.029.
  • 67. Govindasamy K., Dahlan N. A., Janarthanan P., Goh K.L., Chai S.P., Pasbakhsh P., 2020. Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Appl. Clay Sci., 190, 105601. DOI: 10.1016/j.clay.2020.105601.
  • 68. Grant J., Allen C., 2006. Chitosan as a biomaterial for preparation of depot-based delivery systems. ACS Symp. Ser., 934, 201–205. DOI: 10.1021/bk-2006-0934.ch010.
  • 69. Guarino V., Caputo T., Altobelli R., Ambrosio L., 2015. Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater. Sci., 2, 497–502. DOI: 10.3934/MATERSCI.2015.4.497.
  • 70. Guette-Marquet S., Basseguy R., Roques C., Bergel A., 2022. The electrochemical potential is a key parameter for cell adhesion and proliferation on carbon surface. Bioelectrochemistry, 144, 108045. DOI: 10.1016/j.bioelechem.2021.108045.
  • 71. Guo Z., Bo D., He Y., Luo X., Li H., 2018. Degradation properties of chitosan microspheres/poly(L-lactic acid) composite in vitro and in vivo. Carbohydr. Polym., 193, 1–8. DOI: 10.1016/j.carbpol.2018.03.067.
  • 72. Habibovic P., de Groot K., 2007. Osteoinductive biomaterials – properties and relevance in bone repair. J. Tissue. Eng. Regen. Med., 1, 25–32. DOI: 10.1002/term.5.
  • 73. Halim A.S., Keong L.C., Zainol I., Rashid A.H.A., 2012. Biocompatibility and biodegradation of chitosan and derivatives, In: Sarmento B., das Neves J. (Eds.), Chitosan-based systems for biopharmaceuticals, 57–73. DOI: 10.1002/9781119962977.ch4.
  • 74. Hardy A., Seguin C., Brion A., Lavalle P., Schaaf P., Fournel S., Bourel-Bonnet L., Frisch B., de Giorgi M., 2018. 𝛽-cyclodextrin-functionalized chitosan/alginate compact polyelectrolyte complexes (CoPECs) as functional biomaterials with anti-inflammatory properties. ACS Appl. Mater. Interfaces, 10, 29347–29356. DOI: 10.1021/acsami.8b09733.
  • 75. He J., Hu X., Cao J., Zhang Y., Xiao J., Peng li J., Chen D., Xiong C., Zhang L., 2021. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr. Polym., 253, 117198. DOI: 10.1016/j.carbpol.2020.117198.
  • 76. Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R., Rhoades J., Roller S., 2001. Chitosan disrupts the barier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol., 71, 235–244. DOI: 10.1016/S0168-1605(01)00609-2.
  • 77. Hench L.L., Polak J.M., 2002. Third-generation biomedical materials. Science, 295, 1014–1017. DOI: 10.1126/science.1067404.
  • 78. Hirano S., Iwata M., Yamanaka K., Tanaka H., Toda T., Inui H., 1991. Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbits. Agric. Biol. Chem., 55, 2623–2625. DOI: 10.1080/00021369.1991.10871007.
  • 79. Hirano S., Noishiki Y., Kinugawa J., Higashijima H., Hayashi T., 1987. Chitin and chitosan for use as a novel biomedical material. In: Gebelein C.G. (Ed.), Advances in biomedical polymers, 285–297. Springer, Boston, MA. DOI: 10.1007/978-1-4613-1829-3_26.
  • 80. Hosseini S., Naderi-Manesh H., Vali H., Baghaban-Eslaminejad M., Azam Sayahpour F., Sheibani S., Faghihi S., 2019. Contribution of osteocalcin-mimetic peptide enhances osteogenic activity and extracellular matrix mineralization of human osteoblast-like cells. Colloids Surf. B, 173, 662–671. DOI: 10.1016/j.colsurfb.2018.10.035.
  • 81. Hsu S.-C., Don T.-M., Chiu W.-Y., 2002. Free radical degradation of chitosan with potassium persulfate. Polym. Degrad. Stab., 75, 73–83. DOI: 10.1016/S0141-3910(01)00205-1.
  • 82. Hu Y., Chen J., Fan T., Zhang Y., Zhao Y., Shi X., Zhang Q., 2017. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf. B, 157, 93–100. DOI: 10.1016/j.colsurfb.2017.05.059.
  • 83. Hua R., Ni Q., Eliason T.D., Han Y., Gu S., Nicolella D.P., Wang X., Jiang J.X., 2020. Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biol., 94, 95–109. DOI: 10.1016/j.matbio.2020.09.002.
  • 84. Hudecki A., Kiryczyński G., Łos M. J., 2019. Chapter 7 – Biomaterials, definition, overview, In: Łos M.J., Hudecki A., Wiecheć E. (Eds.), Stem Cells and Biomaterials for Regenerative Medicine, 85–98. DOI: 10.1016/B978-0-12-812258-7.00007-1.
  • 85. Hynes R.O., 1999. Cell adhesion: old and new questions. Trends in Cell Biology, 9, M33-7. Intini C., Elviri L., Cabral J., Mros S., Bergonzi C., Bianchera A., Flammini L., Govoni P., Barocelli E., Bettini R., McConnell M., 2018. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr. Polym., 199, 593–602. DOI: 10.1016/j.carbpol.2018.07.057.
  • 86. Islam M.M., Shahruzzaman M., Biswas S., Nurus Sakib M., Rashid T.U., 2020. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater., 5, 164–183. DOI: 10.1016/j.bioactmat.2020.01.012.
  • 87. Jang J.-H., Castano O., Kim H.-W., 2009. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliv. Rev., 61, 1065–1083. DOI: 10.1016/j.addr.2009.07.008.
  • 88. Januariyasa I.K., Ana I.D., Yusuf Y., 2020. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydrox-yapatite nanoparticles scaffold for bone tissue engineering. Mater. Sci. Eng., C, 107, 110347. DOI: 10.1016/j.msec.2019.110347.
  • 89. Jayakumar R., Ramachandran R., Sudheesh Kumar P.T., Divyarani V.V., Srinivasan S., Chennazhi K.P., Tamura H., Nair S.V., 2011. Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. Int. J. Biol. Macromol., 49, 274–280. DOI: 10.1016/j.ijbiomac.2011.04.020.
  • 90. Biomimetic scaffolds based on chitosan in bone regeneration. A review Je J.Y., Kim S.K., 2012. Chapter 21 – Chitooligosaccharides as potential nutraceuticals. production and bioactivities, In: Kim S.-K. (Ed.), Advances in Food and Nutrition Research, 65, 321-336. Academic Press. DOI: 10.1016/B978-0-12-416003-3.00021-4.
  • 91. Jennings J.A., 2017. Controlling chitosan degradation properties in vitro and in vivo, In: Jennings J.A., Bumgardner J.D. (Eds.), Chitosan based biomaterials Volume 1, 159–182. Woodhead Publishing. DOI: 10.1016/B978-0- 08-100230-8.00007-8.
  • 92. Jiao Y., Liu Z., Zhou C., 2007. Fabrication and characterization of PLLA chitosan hybrid scaffolds with improved cell compatibility. J. Biomed. Mater. Res., 80A: 820-825. DOI: 10.1002/jbm.a.31061.
  • 93. Johansen J.S., Williamson M.K., Rice J.S., Price P.A., 1992. Identification of proteins secreted by human osteoblastic cells in culture. J. Bone Miner. Res., 7, 501–512. DOI: 10.1002/jbmr.5650070506.
  • 94. Kaczmarek B., Sionkowska A., Gołyńska M., Polkowska I., Szponder T., Nehrbass D., Osyczka A.M., 2018. In vivo study on scaffolds based on chitosan collagen and hyaluronic acid with hydroxyapatite. Int. J. Biol. Macromol., 118, 938–944. DOI: 10.1016/j.ijbiomac.2018.06.175.
  • 95. Kalfas I.H., 2001. Principles of bone healing. Neurosurg. focus, 10(4). DOI: 10.3171/foc.2001.10.4.2.
  • 96. Kanczler J.M., Wells J.A., Gibbs D.M.R., Marshall K.M., Tang D.K.O., Oreffo R.O.C., 2020. Chapter 50 – Bone tissue engineering and bone regeneration, In: Lanza R., Langer R., Vacanti J.P., Atala A. (Eds.), Principles of tissue engineering (fifth edition), 917-935. Academic Press. DOI: 10.1016/B978-0-12-818422-6.00052-6.
  • 97. Kara A., Tamburaci S., Tihminlioglu F., Havitcioglu H., 2019. Bioactive fish scale incorporated chitosan biocom-posite scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 130, 266–279. DOI: 10.1016/j.ijbiomac.2019.02.067.
  • 98. Kavya K.C., Jayakumar R., Nair S., Chennazhi K.P., 2013. Fabrication and characterization of chitosan/gelatin/𝑛SiO2 composite scaffold for bone tissue engineering. Int. J. Biol. Macromol., 59, 255–263. DOI: 10.1016/j.ijbiomac.2013.04.023.
  • 99. Kaygusuz H., Micciulla S., Erim F.B., von Klitzing R., 2017. Effect of anionic surfactant on alginate-chitosan polyelectrolyte multilayer thickness. J. Polym. Sci., Part B: Polym. Phys., 55, 1798–1803. DOI: 10.1002/polb.24429.
  • 100. Keselowsky B.G., Collard D.M., García A.J., 2005. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. PNAS, 102, 5953–5957. DOI: 10.1073/pnas.0407356102.
  • 101. Khan S., Garg M., Chockalingam S., Gopinath P., Kundu P.P., 2020. TiO2 doped chitosan/poly (vinyl alcohol) nanocomposite film with enhanced mechanical properties for application in bone tissue regeneration. Int. J. Biol. Macromol., 143, 285-296. DOI: 10.1016/j.ijbiomac.2019.11.246.
  • 102. Kim H., Tator C.H., Shoichet M.S., 2011. Chitosan implants in the rat spinal cord: Biocompatibility and biodegradation. J. Biomed. Mater. Res., 97A, 395–404. DOI: 10.1002/jbm.a.33070.
  • 103. Kim I.Y., Seo S.J., Moon H.S., Yoo M.K., Park I.Y., Kim B.C., Cho C.S., 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv., 26, 1–21. DOI: 10.1016/j.biotechadv.2007.07.009.
  • 104. Kim J.-S., Shin D.-H., 2013. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor. Dent. Endod., 38, 36–42. DOI: 10.5395/rde.2013.38.1.36.
  • 105. Klein-Nulend J., Bonewald L.F., 2020. Chapter 6 – The osteocyte, In: Bilezikian J.P., Martin T.J., Clemens T.L., Rosen C.J. (Eds.), Principles of bone biology (fourth edition), 133–162. Academic Press. DOI: 10.1016/B978-0-12-814841-9.00006-3.
  • 106. Kou S.G., Peters L.M., Mucalo M.R., 2021. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol., 169, 85–94. DOI: 10.1016/j.ijbiomac.2020.12.005.
  • 107. Kozusko S.D., Riccio C., Goulart M., Bumgardner J., Jing X.L., Konofaos P., 2018. Chitosan as a bone scaffold biomaterial. J. Craniofacial Surg., 29, 1788–1793. DOI: 10.1097/SCS.0000000000004909.
  • 108. Kucharska M., Sikora M., Brzoza-Malczewska K., Owczarek M., 2019. Antimicrobial properties of chitin and chitosan, In: van den Broek L.A.M., Boeriu C.G. (Eds.), Chitin and chitosan, 169–187. DOI: 10.1002/9781119450 467.ch7.
  • 109. Kulkarni A.D., Vanjari Y.H., Sancheti K.H., Patel H.M., Belgamwar V.S., Surana S.J., Pardeshi C.V., 2016. Polyelectrolyte complexes: mechanisms critical experimental aspects and applications. Artif. Cells Nanomed. Biotechnol., 44, 1615–1625. DOI: 10.3109/21691401.2015.1129624.
  • 110. Kumar M., Brar A., Vivekanand V., Pareek N., 2019. Chapter 7 – Possibilities and perspectives of chitosan scaffolds and composites for tissue engineering, In: Holban A.M., Grumezescu A.M. (Eds.), Materials for biomedical engineering, 167–203. Elsevier. DOI: 10.1016/B978-0-12-816909-4.00007-5.
  • 111. Kumari S., Kishor R., 2020. Chapter 1 - Chitin and chitosan: origin properties and applications, In: Gopi S., Thomas S., Pius A. (Eds.), Handbook of chitin and chitosan, 1-33. Elsevier. DOI: 10.1016/b978-0-12-817970-3.00001-8.
  • 112. Kumari S., Tiyyagura H.R., Pottathara Y.B., Sadasivuni K.K., Ponnamma D., Douglas T.E.L., Skirtach A.G., Mohan M.K., 2021. Surface functionalization of chitosan as a coating material for orthopaedic applications: A comprehensive review. Carbohydr. Polym., 255, 117487. DOI: 10.1016/j.carbpol.2020.117487.
  • 113. Lal N., Dubey J., Gaur P., Verma N., Verma A., 2017. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Mater. Sci. Eng., C, 79, 491–498. DOI: 10.1016/j.msec.2017.05.051.
  • 114. Lallana E., Rios De La Rosa J. M., Tirella A., Pelliccia M., Gennari A., Stratford I. J., Puri S., Ashford M., Tirelli N., 2017. Chitosan/hyaluronic acid nanoparticles: rational design revisited for RNA delivery. Mol. Pharmaceutics, 14, 2422–2436. DOI: 10.1021/acs.molpharmaceut.7b00320.
  • 115. Lalzawmliana V., Anand A., Mukherjee P., Chaudhuri S., Kundu B., Nandi S.K., Thakur N.L., 2019. Marine organisms as a source of natural matrix for bone tissue engineering. Ceram. Int., 45, 1469–1481. DOI: 10.1016/j.ceram int.2018.10.108.
  • 116. Leedy M.R., Martin H.J., Norowski P.A., Jennings J.A., Haggard W.O., Bumgardner J.D., 2011. Use of chitosan as a bioactive implant coating for bone-implant applications, In: Jayakumar R., Prabaharan M., Muzzarelli R. (Eds.), Chitosan for Biomaterials II. Advances in Polymer Science, 244, 129–166. Springer, Berlin, Heidelberg. DOI: 10.1007/12_2011_115.
  • 117. Li Q.-L., Chen Z.-Q., Darvell B.W., Liu L.-K., Jiang H.-B., Zen Q., Peng Q., Ou G.-M., 2007. Chitosanphosphorylated chitosan polyelectrolyte complex hydrogel as an osteoblast carrier. J. Biomed. Mater. Res., 82B, 481–486. DOI: 10.1002/jbm.b.30753.
  • 118. Li T.-T., Zhang Y., Ren H.-T., Peng H.-K., Lou C.-W., Lin J.-H., 2021. Two-step strategy for constructing hierarchical pore structured chitosan–hydroxyapatite composite scaffolds for bone tissue engineering. Carbohydr. Polym., 260, 117765. DOI: 10.1016/j.carbpol.2021.117765.
  • 119. Li X., Pennisi A., Yaccoby S., 2008. Role of decorin in the antimyeloma effects of osteoblasts. Blood, 112, 159–168. DOI: 10.1182/blood-2007-11-124164.
  • 120. Li X., Xu P., Cheng Y., Zhang W., Zheng B., Wang Q., 2020a. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Mater. Sci. Eng., C, 111, 110749. DOI: 10.1016/j.msec.2020.110749.
  • 121. Li Y., Chi Y. Q., Yu C. H., Xie Y., Xia M. Y., Zhang C. L., Han X., Peng Q., 2020b. Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohydr. Polym, 241, 116386. DOI: 10.1016/j.carbpol.2020.116386.
  • 122. Li Z., Ramay H.R., Hauch K.D., Xiao D., Zhang M., 2005. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26, 3919–3928. DOI: 10.1016/j.biomaterials.2004.09.062.
  • 123. Liao I.-C., Wan A.C.A., Yim E.K.F., Leong K.W., 2005. Controlled release from fibers of polyelectrolyte complexes. J. Controlled Release, 104, 347–358. DOI: 10.1016/j.jconrel.2005.02.013.
  • 124. Lim L.-Y., Khor E., Koo O., 1998. 𝛾 irradiation of chitosan. J. Biomed. Mater. Res., 43, 282–290. DOI: 10.1002/(sici) 1097-4636(199823)43:3<282::aid-jbm9>3.3.co;2-x.
  • 125. Lin M.-H., Wang Y.-H., Kuo C.-H., Ou S.-F., Huang P.-Z., Song T.-Y., Chen Y.-C., Chen S.-T., Wu C.-H., Hsueh Y.-H., Fan F.-Y., 2021. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydr. Polym., 257, 117639. DOI: 10.1016/j.carbpol.2021.117639
  • 126. Lin X., Patil S., Gao Y.-G., Qian A., 2020. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol., 11, 757. DOI: 10.3389/fphar.2020.00757.
  • 127. Lu S., Song X., Cao D., Chen Y., Yao K., 2004. Preparation of water-soluble chitosan. J. Appl. Polym. Sci., 91, 3497–3503. DOI: 10.1002/app.13537.
  • 128. Luo K., Yin J., Khutoryanskaya O.V., Khutoryanskiy V.V., 2008. Mucoadhesive and elastic films based on blends of chitosan and hydroxyethylcellulose. Macromol. Biosci., 8, 184–192. DOI: 10.1002/mabi.200700185.
  • 129. Ma Z., Gao C., Gong Y., Ji J., Shen J., 2002. Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. J. Biomed. Mater. Res., 63, 838–847. DOI: 10.1002/jbm. 10470.
  • 130. Ma Z., Wang W., Wu Y., He Y., Wu T., 2014. Oxidative degradation of chitosan to the low molecular water-soluble chitosan over peroxotungstate as chemical scissors. PLoS ONE, 9, e100743. DOI: 10.1371/journal.pone.0100743.
  • 131. Madureira A.R., Sarmento B., Pintado M., 2015. Current state of the potential use of chitosan as pharmaceutical excipient, In: Thakur V.K., Thakur M.K. (Eds.), Handbook of polymers for pharmaceutical technologies, 275–297. DOI: 10.1002/9781119041450.ch9.
  • 132. Maji K., Dasgupta S., Pramanik K., Bissoyi A., 2016. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering. Int. J. Biomater., 2016, 9825659. DOI: 10.1155/2016/9825659.
  • 133. Manjubala I., Ponomarev I., Wilke I., Jandt K.D., 2008. Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. J. Biomed. Mater. Res., 84B, 7–16. DOI: 10.1002/jbm.b.30838.
  • 134. Mano J.F., Hungerford G., Gómez Ribelles J.L., 2008. Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Mater. Sci. Eng., C, 28, 1356–1365. DOI: 10.1016/j.msec.2008.03.005.
  • 135. Maurstad G., Danielsen S., Stokke B.T., 2007. The influence of charge density of chitosan in the compaction of the polyanions DNA and xanthan. Biomacromolecules, 8, 1124–1130. DOI: 10.1021/bm0610119.
  • 136. Mi F.-L., Tan Y.-C., Liang H.-F., Sung H.-W., 2002. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 23, 181–191. DOI: 10.1016/S0142-9612(01)00094-1.
  • 137. Middleton J.C., Tipton A.J., 2000. Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346. DOI: 10.1016/S0142-9612(00)00101-0.
  • 138. Morgan E.F., Barnes G.L., Einhorn T.A., 2013. Chapter 1 – The bone organ system. form and function, In: Marcus R., Feldman D., Dempster D.W., Luckey M., Cauley J.A., Osteoporosis (fourth edition), 3-20. Academic Press. DOI: 10.1016/B978-0-12-415853-5.00001-7.
  • 139. Moura M.J., Brochado J., Gil M.H., Figueiredo M.M., 2017. In situ forming chitosan hydrogels: Preliminary evaluation of the in vivo inflammatory response. Mater. Sci. Eng., C, 75, 279–285. DOI: 10.1016/j.msec.2017.02.050.
  • 140. Navarro M., Michiardi A., Castaño O., Planell J.A., 2008. Biomaterials in orthopaedics. J. R. Soc. Interface, 5, 1137–1158. DOI: 10.1098/rsif.2008.0151. Nawrotek K., Tylman M., Adamus-Włodarczyk A., Rudnicka K., Gatkowska J., Wieczorek M., Wach R., 2020. Influence of chitosan average molecular weight on degradation and stability of electrodeposited conduits. Carbohydr. Polym., 244, 116484. DOI: 10.1016/j.carbpol.2020.116484.
  • 141. Nowacka M., 2012. Biomaterials for tissue engineering and regenerative medicine. Wiadomości Chemiczne 66, 9–10, 909-933 (in Polish).
  • 142. O’Brien F.J., 2011. Biomaterials & scaffolds for tissue engineering. Mater. Today, 14, 88–95. DOI: 10.1016/S1369-7021(11)70058-X.
  • 143. Onishi H., Machida Y., 1999. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials, 20, 175–182. DOI: 10.1016/S0142-9612(98)00159-8.
  • 144. Oyarzun-Ampuero F.A., Brea J., Loza M.I., Torres D., Alonso M.J., 2009. Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int. J. Pharm., 381, 122–129. DOI: 10.1016/j.ijpharm.2009.04.009.
  • 145. Paital S. R., Dahotre N. B., 2009. Calcium phosphate coatings for bio-implant applications: Materials performance factors and methodologies. Mater. Sci. Eng., R, 66, 1–70. DOI: 10.1016/j.mser.2009.05.001.
  • 146. Pandey S., Mishra A., Raval P., Patel H., Gupta A., Shah D., 2013. Chitosan-pectin polyelectrolyte complex as a carrier for colon targeted drug delivery. J. Young Pharm., 5(4), 160–166. DOI: 10.1016/j.jyp.2013.11.002.
  • 147. Pandit A., Indurkar A., Deshpande C., Jain R., Dandekar P., 2021. A systematic review of physical techniques for chitosan degradation. Carbohydr. Polym. Technol. Appl., 2, 100033. DOI: 10.1016/j.carpta.2021.100033.
  • 148. Pape H.C., Evans A., Kobbe P., 2010. Autologous bone graft: Properties and techniques. J. Orthop. Trauma, 24, S36–S40. DOI: 10.1097/BOT.0b013e3181cec4a1.
  • 149. Park H., Choi B., Hu J., Lee M., 2013. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater., 9, 4779–4786. DOI: 10.1016/j.actbio.2012.08.033.
  • 150. Park J.W., Park K.H., Seo S., 2019. Natural polyelectrolyte complex-based pH-dependent delivery carriers using alginate and chitosan. J. Appl. Polym. Sci., 136, 48143. DOI: 10.1002/app.48143.
  • 151. Patil J.H., Vishnumurthy K.A., Kusanur R., Melavanki R., 2022. Synthesis and characterization of chitosan-hydroxyapatite composite for bone graft applications. J. Indian Chem. Soc., 99, 100308. DOI: 10.1016/j.jics.2021. 100308.
  • 152. Patil T., Saha S., Biswas A., 2017. Preparation and characterization of HAp coated chitosan-alginate PEC porous scaffold for bone tissue engineering. Macromol. Symp., 376, 1600205. DOI: 10.1002/masy.201600205.
  • 153. Petrov I., Kalinkevich O., Pogorielov M., Kalinkevich A., Stanislavov A., Sklyar A., Danilchenko S., Yovcheva T., 2016. Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment. Carbohydr. Polym., 151, 770–778. DOI: 10.1016/j.carbpol.2016.05.110.
  • 154. Phoeung T., Spanedda M.V., Roger E., Heurtault B., Fournel S., Reisch A., Mutschler A., Perrin-Schmitt F., Hemmerlé, J., Collin D., Rawiso M., Boulmedais F., Schaaf P., Lavalle P., Frisch B., 2017. Alginate/chitosan compact polyelectrolyte complexes: a cell and bacterial repellent material. Chem. Mater., 29, 10418–10425. DOI: 10.1021/acs.chemmater.7b03863.
  • 155. Pierschbacher M.D., Polarek J.W., Craig W S., Tschopp J.F., Sipes N.J., Harper J.R., 1994. Manipulation of cellular interactions with biomaterials toward a therapeutic outcome: A perspective. J. Cell. Biochem., 56, 150–154. DOI: 10.1002/jcb.240560205.
  • 156. Pochanavanich P., Suntornsuk W., 2002. Fungal chitosan production and its characterization. Lett. Appl. Microbiol., 35, 17–21. DOI: 10.1046/j.1472-765X.2002.01118.x.
  • 157. Poddar D., Jain P., Rawat S., Mohanty S., 2021. Influence of varying concentrations of chitosan coating on the pore wall of polycaprolactone based porous scaffolds for tissue engineering application. Carbohydr. Polym., 259, 117501. DOI: 10.1016/j.carbpol.2020.117501.
  • 158. Porrelli D., Gruppuso M., Vecchies F., Marsich E., Turco G., 2021. Alginate bone scaffolds coated with a bioactive lactose modified chitosan for human dental pulp stem cells proliferation and differentiation. Carbohydr. Polym., 273, 118610. DOI: 10.1016/j.carbpol.2021.118610.
  • 159. Potaś J., Szymańska E., Winnicka K., 2020. Challenges in developing of chitosan – Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. Eur. Polym. J., 140, 110020. DOI: 10.1016/j.eurpolymj.2020. 110020.
  • 160. Preethi Soundarya S., Haritha Menon A., Viji Chandran S., Selvamurugan N., 2018. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int. J. Biol. Macromol., 119, 1228–1239. DOI: 10.1016/j.ijbiomac.2018.08.056.
  • 161. Qasim S.B., Husain S., Huang Y., Pogorielov, M., Deineka V., Lyndin M., Rawlinson A., Rehman I.U., 2017. In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polym. Degrad. Stab., 136, 31–38. DOI: 10.1016/j.polymdegradstab.2016.11.018.
  • 162. Raafat D., von Bargen K., Haas A., Sahl H.-G., 2008. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol., 74, 3764–3773. DOI: 10.1128/AEM.00453-08.
  • 163. Ravi Kumar M.N.V., Muzzarelli R.A.A., Muzzarelli C., Sashiwa H., Domb A. J., 2004. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104, 6017–6084. DOI: https://doi.org/10.1021/cr030441b.
  • 164. Ressler A., Antunović, M., Teruel-Biosca L., Ferrer G.G., Babić, S., Urlić I., Ivanković M., Ivanković H., 2022. Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydr. Polym., 277, 118883. DOI: 10.1016/j.carbpol.2021.118883.
  • 165. Reys L.L., Silva S.S., Pirraco R.P., Marques A.P., Mano J.F., Silva T.H., Reis R.L., 2017. Influence of freezing emperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. Eur. Polym. J., 95, 232–240. DOI: 10.1016/j.eurpolymj.2017.08.017.
  • 166. Roach P., Eglin D., Rohde K., Perry C.C., 2007. Modern biomaterials: a review – bulk properties and implications of surface modifications. J. Mater. Sci.: Mater. Med., 18, 1263–1277. DOI: 10.1007/s10856-006-0064-3.
  • 167. Ruoslahti E., 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol, 12, 697-715. DOI: 10.1146/annurev.cellbio.12.1.697.
  • 168. Sadeghianmaryan A., Naghieh S., Alizadeh Sardroud H., Yazdanpanah Z., Afzal Soltani Y., Sernaglia J., Chen X., 2020. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Int. J. Biol. Macromol., 164, 3179–3192. DOI: 10.1016/j.ijbiomac.2020.08.180.
  • 169. Saito K., Nakatomi M., Ohshima H., 2020. Dentin matrix protein 1 compensates for lack of osteopontin in regulating odontoblastlike cell differentiation after tooth injury in mice. J. Endodontics, 46, 89–96. DOI: 10.1016/j.joen.2019.10.002.
  • 170. Salgado A.J., Oliveira J.M., Martins A., Teixeira F.G., Silva N.A., Neves N.M., Sousa N., Reis R.L., 2013. Chapter One - Tissue engineering and regenerative medicine: Past present and future, In: Geuna S., Perroteau I., Tos P., Battiston B. (Eds.), International review of neurobiology, 108, 1-33. Academic Press. DOI: 10.1016/B978-0-12-410499-0.00001-0.
  • 171. San Juan A., Montembault A., Gillet D., Say J.P., Rouif S., Bouet T., Royaud I., David L., 2012. Degradation of chitosan-based materials after different sterilization treatments. IOP Conf. Ser.: Mater. Sci. Eng., 31, 012007. DOI: 10.1088/1757-899X/31/1/012007.
  • 172. Saravanan S., Vimalraj S., Anuradha D., 2018. Chitosan based thermoresponsive hydrogel containing Graphene oxide for bone tissue repair. Biomed. Pharmacother., 107, 908–917. DOI: 10.1016/j.biopha.2018.08.072.
  • 173. Scalera F., Monteduro A.G., Maruccio G., Blasi L., Gervaso F., Mazzotta E., Malitesta C., Piccirillo C., 2021. Sustainable chitosan-based electrical responsive scaffolds for tissue engineering applications. Sustainable Mater. Technol., 28, e00260. DOI: 10.1016/j.susmat.2021.e00260.
  • 174. Schemitsch E.H., 2017. Size matters: defining critical in bone defect size! J. Orthop. Trauma, 31, S20–S22. DOI: 10.1097/BOT.0000000000000978.
  • 175. Scotchford C.A., Gilmore C.P., Cooper E., Leggett G.J., Downes S., 2002. Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J. Biomed. Mater. Res., 59, 84–99. DOI: 10.1002/jbm.1220.
  • 176. Sellgren K.L., Ma T., 2012. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. J. Tissue Eng. Regener. Med., 6, 49–59. DOI: 10.1002/term.396.
  • 177. Shakir M., Jolly R., Khan M.S., Rauf A., Kazmi S., 2016. Nano-hydroxyapatite/𝛽-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Int. J. Biol. Macromol., 93, 276–289. DOI: 10.1016/j.ijbiomac.2016.08.046.
  • 178. Shi G.-N., Zhang C.-N., Xu R., Niu J.-F., Song H.-J., Zhang X.-Y., Wang W.-W., Wang Y.-M., Li C., Wei X.-Q., Kong D.-L., 2017. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosannanoparticles vaccine. Biomaterials, 113, 191–202. DOI: 10.1016/j.biomaterials.2016.10.047.
  • 179. Siggelkow H., Schmidt E., Hennies B., Hüfner M., 2004. Evidence of downregulation of matrix extracellular phosphoglycoprotein during terminal differentiation in human osteoblasts. Bone, 35, 570–576. DOI: 10.1016/j.bone. 2004.03.033.
  • 180. Singh A., Gill G., Kaur H., Amhmed M., Jakhu H., 2018. Role of osteopontin in bone remodeling and orthodontictooth movement: a review. Prog. Orthod. 19, 18. DOI: 10.1186/s40510-018-0216-2.
  • 181. Sobieska S. , Zimowska B., Łagan S., 2013. Comperison of wettability and surface free energy of biomaterails and bone tissue. Aktualne Problemy Biomechaniki, 7, 153-156 (in Polish). Available at: http://www.biomechanik.pl/apb/artykuly/2013/153.pdf.
  • 182. Sørbotten A., Horn S.J., Eijsink V.G.H., Vårum K.M., 2005. Degradation of chitosans with chitinase B from Serratia marcescens: Production of chito-oligosaccharides and insight into enzyme processivity. FEBS J., 272, 538–549. DOI: 10.1111/j.1742-4658.2004.04495.x.
  • 183. Stein G.S., Lian J.B., Gerstenfeld L.G., Victoria S., Michael A., Thomas O., Elizabeth M., 1989. The onset and progression of osteoblast differentiation is functionally related to cellular proliferation. Connect. Tissue Res., 20, 3–13. DOI: 10.3109/03008208909023869.
  • 184. Stein G.S., Lian J.B., Owen T.A., 1990. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J., 4, 3111–3123. DOI: 10.1096/fasebj.4.13.2210157.
  • 185. Strand S.P., Danielsen S., Christensen B.E., Vårum K.M., 2005. Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules, 6, 3357–3366. DOI: 10.1021/bm0503726.
  • 186. Sukul M., Sahariah P., Lauzon H.L., Borges J., Másson M., Mano J.F., Haugen H.J., Reseland J.E., 2021. In vitro biological response of human osteoblasts in 3D chitosan sponges with controlled degree of deacetylation and molecular weight. Carbohydr. Polym., 254, 117434. DOI: 10.1016/j.carbpol.2020.117434.
  • 187. Suo H., Zhang J., Xu M., Wang L., 2021. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater. Sci. Eng., C, 123, 111963. DOI: 10.1016/j.msec.2021.111963.
  • 188. Szymańska E., Winnicka K., 2015. Stability of chitosan – A challenge for pharmaceutical and biomedical applications. Mar. Drugs, 13, 1819–1846. DOI: 10.3390/md13041819.
  • 189. Taylor L., Wankell M., Saxena P., McFarlane C., Hebbard L., 2022. Cell adhesion an important determinant of myo-genesis and satellite cell activity. Biochim. Biophys. Acta, Mol. Cell. Res., 1869, 119170. DOI: 10.1016/j.bbamcr. 2021.119170.
  • 190. Teitelbaum S.L., 2000. Bone resorption by osteoclasts. Science, 289, 1504–1508. DOI: 10.1126/science.289.5484.1504.
  • 191. Thein-Han W.W., Kitiyanant Y., 2007. Chitosan scaffolds for in vitro buffalo embryonic stem-like cell culture: An approach to tissue engineering. J. Biomed. Mater. Res., 80B, 92–101. DOI: 10.1002/jbm.b.30573.
  • 192. Thuaksuban N., Nuntanaranont T., Suttapreyasri S., Pattanachot W., Sutin K., Cheung L.K., 2013. Biomechanical properties of novel biodegradable poly 𝜀-caprolactone-chitosan scaffolds. J. Invest. Clin. Dent., 4, 26–33. DOI: 10.1111/j.2041-1626.2012.00131.x.
  • 193. Tian Y., Liu H., Sheldon B.W., Webster T.J., Yang S., Yang H., Yang L., 2019. Surface energy-mediated fibronectin adsorption and osteoblast responses on nanostructured diamond. J. Mater. Sci. Technol., 35, 817–823. DOI: 10.1016/j.jmst.2018.11.009.
  • 194. Tsai H.-S., Wang Y.-Z., Lin J.-J., Lien W.-F., 2009. Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree. J. Appl. Polym. Sci., 116, 1686-1693. DOI: 10.1002/app.31689.
  • 195. Tsao C.T., Chang C.H., Lin Y.Y., Wu M.F., Han J.L., Hsieh K.H., 2011. Kinetic study of acid depolymerization of chitosan and effects of low molecular weight chitosan on erythrocyte rouleaux formation. Carbohydr. Res., 346, 94–102. DOI: 10.1016/j.carres.2010.10.010.
  • 196. Unagolla J.M., Alahmadi T.E., Jayasuriya A.C., 2018. Chitosan microparticles based polyelectrolyte complex scaffolds for bone tissue engineering in vitro and effect of calcium phosphate. Carbohydr. Polym., 199, 426–436. DOI: 10.1016/j.carbpol.2018.07.044.
  • 197. Unnithan A.R., Sasikala A.R.K., Park C.H., Kim C.S., 2017. A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J. Ind. Eng. Chem., 46, 182–191. DOI: 10.1016/j.jiec.2016.10.029.
  • 198. Vaidhyanathan B., Vincent P., Vadivel S., Karuppiah P., AL-Dhabi N.A., Sadhasivam D.R., Vimalraj S., Saravanan S., 2021. Fabrication and investigation of the suitability of chitosan-silver composite scaffolds for bone tissue
  • 199. engineering applications. Process Biochem., 100, 178–187. DOI: 10.1016/j.procbio.2020.10.008.
  • 200. Valdez-Peña A.U., Espinoza-Perez J.D., Sandoval-Fabian G.C., Balagurusamy N., Hernandez-Rivera A., de-la-Garza-Rodriguez I.M., Contreras-Esquivel J.C., 2010. Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci. Biotechnol., 19, 553–557. DOI: 10.1007/s10068-010-0077-z.
  • 201. Vyas V., Kaur T., Thirugnanam A., 2017. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 104, 1946–1954. DOI: 10.1016/j.ijbiomac.2017.04.055. Wan Y., Fang Y., Wu H., Cao X., 2007. Porous polylactide/chitosan scaffolds for tissue engineering. J. Biomed. Mater. Res., 80A, 776–789. DOI: 10.1002/jbm.a.31025.
  • 202. Wang C., Huang W., Zhou Y., He L., He Z., Chen Z., He X., Tian S., Liao J., Lu B., Wei Y., Wang M., 2020a. 3D printing of bone tissue engineering scaffolds. Bioact. Mater., 5, 82–91. DOI: 10.1016/j.bioactmat.2020.01.004.
  • 203. Wang J.-Z., Huang X.-B., Xiao J., Yu W.-T., Wang W., Xie W.-Y., Zhang Y., Ma X.-J., 2010. Hydro-spinning: A novel technology for making alginate/chitosan fibrous scaffold. J. Biomed. Mater. Res., 93A, 910–919. DOI: 10.1002/jbm.a.32590.
  • 204. Wang W., Xue C., Mao X., 2020b. Chitosan: Structural modification biological activity and application. Int. J. Biol. Macromol., 164, 4532–4546. DOI: 10.1016/j.ijbiomac.2020.09.042.
  • 205. Wu D., Zhu L., Li Y., Zhang X., Xu S., Yang G., Delair T., 2020. Chitosan-based Colloidal polyelectrolyte complexes for drug delivery: A review. Carbohydr. Polym., 238, 116126. DOI: 10.1016/j.carbpol.2020.116126.
  • 206. Wu Q.-X., Lin D.-Q., Yao S.-J., 2014. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar. Drugs, 12, 6236–6253. DOI: 10.3390/md12126236.
  • 207. Xiao D., Guo T., Yang F., Feng G., Shi F., Li J., Wang D., Duan K., Weng J., 2017. In situ formation of nanostructured calcium phosphate coatings on porous hydroxyapatite scaffolds using a hydrothermal method and the effect on mesenchymal stem cell behavior. Ceram. Int., 43, 1588–1596. DOI: 10.1016/j.ceramint.2016.10.023.
  • 208. Xu H., Yang Y., 2014. 3D electrospun fibrous structures from biopolymers, In: Yang Y., Xu H., Yu X. (Eds.), Lightweight materials from biopolymers and biofibers. ACS Symp. Ser., 1175, 103–126. DOI: 10.1021/bk-2014-1175.ch007.
  • 209. Xu Y., Xia D., Han J., Yuan S., Lin H., Zhao C., 2017. Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr. Polym., 177, 210–216. DOI: 10.1016/j.carbpol.2017.08.069.
  • 210. Yadav M., Goswami P., Paritosh K., Kumar M., Pareek N., Vivekanand V., 2019. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess, 6, 8. DOI: 10.1186/s40643-019-0243-y.
  • 211. Yan H., Chen X., Feng M., Shi Z., Zhang D., Lin Q., 2017. Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater. Lett., 209, 492–496. DOI: 10.1016/j.matlet.2017.08.093.
  • 212. Yan J., Ai S., Yang F., Zhang K., Huang Y., 2020. Study on mechanism of chitosan degradation with hydrodynamic cavitation. Ultrason. Sonochem., 64, 105046. DOI: 10.1016/j.ultsonch.2020.105046.
  • 213. Yang J., Ueharu H., Mishina Y., 2020. Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis. Bone, 138, 115467. DOI: 10.1016/j.bone.2020.115467. Yang L., Li Y., Sheldon B.W., Webster T.J., 2012. Altering surface energy of nanocrystalline diamond to control osteoblast responses. J. Mater. Chem., 22, 205–214. DOI: 10.1039/c1jm13593g.
  • 214. Younes I., Hajji S., Frachet V., Rinaudo M., Jellouli K., Nasri M., 2014. Chitin extraction from shrimp shell using enzymatic treatment. Antitumor antioxidant and antimicrobial activities of chitosan. Int. J. Biol. Macromol., 69, 489–498. DOI: 10.1016/j.ijbiomac.2014.06.013.
  • 215. Younes I., Rinaudo M., 2015. Chitin and chitosan preparation from marine sources. Structure properties and applications. Mar. Drugs, 13, 1133–1174. DOI: 10.3390/md13031133.
  • 216. Yuan X., Zheng J., Jiao S., Cheng G., Feng C., Du Y., Liu H., 2019. A review on the preparation of chitosan oligosaccharides and application to human health animal husbandry and agricultural production. Carbohydr. Polym 220, 60–70. DOI: 10.1016/j.carbpol.2019.05.050.
  • 217. Zafeiris K., Brasinika D., Karatza A., Koumoulos E., Karoussis I.K., Kyriakidou K., Charitidis C.A., 2021. Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mater. Sci. Eng., C, 119, 111639. DOI: 10.1016/j.msec.2020.111639.
  • 218. Zargar V., Asghari M., Dashti A., 2015. A Review on chitin and chitosan polymers: structure chemistry solubility derivatives and applications. ChemBioEng Reviews, 2, 204–226. DOI: 10.1002/cben.201400025.
  • 219. Zarghami V., Ghorbani M., Bagheri K.P., Shokrgozar M.A., 2021. Melittin antimicrobial peptide thin layer on bone implant chitosan-antibiotic coatings and their bactericidal properties. Mater. Chem. Phys., 263, 124432. DOI: 10.1016/j.matchemphys.2021.124432.
  • 220. Zhang H., Neau S.H., 2002. In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents. Biomaterials, 23, 2761–2766. DOI: 10.1016/S0142-9612(02)00011-X.
  • 221. Zhu H., Ji A., Shen J., 2002. Surface engineering of poly (DL-lactic acid) by entrapment of biomacromolecules. Macromol. Rapid Commun., 23, 819–823. DOI: 10.1002/1521-3927(20021001)23:14<819::AID-MARC819> 3.0.CO;2-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98d81658-dd81-48a6-8ff5-afa035af554a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.