PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of genetic algorithms in the task of choosing inputs for probabilistic neural network classifier of faults of gear-tooth

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article are presented results of trials of building an application based on probabilistic neural network, used to diagnose damages to the gear wheel teeth in the form of cracks at the base of the tooth. To determine the proper network learning process is necessary to get from the tested object numerous set of input data. Conducted researches are based on data obtained from the identified model of gear working in the drive system, which made it possible to acquire the necessary amount of data. In experiments was tested the usefulness of different sets of descriptors of teeth damages, constructed on the basis of vibratory signals, processed using the Wigner-Ville transform. Often the problem, which makes the proper learning of the neural classifiers impossible is the size of the network structure. Therefore, in further studies was examined the usefulness of genetic algorithms which task is selecting an input data for the artificial neural networks of PNN type.
Rocznik
Strony
15--19
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Silesian University of Technology, Faculty of Transport, Krasinskiego 8, 40-019 Katowice, Poland
autor
  • University of Economics in Katowice, Faculty of Economics, 1 Maja 47, 40-228 Katowice, Poland
Bibliografia
  • [1] CZECH, P., et al.: Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics. Journal of Vibroengineering, Vol. 16, Issue 4 (2014)
  • [2] BATTO, W., BORKZOWSKI, B., GŁOCKI, k.: Application of database systems in machine diagnostic monitoring. Maintenance and Reliability, vol. 1(37) (2008)
  • [3] DĄBROWSKI, D., CIOCH, W.: Neural classifiers of vibroacoustic signals in implementation on programmable devices (FPGA) – Comparison. Acta Physica Polonica, vol. 119, no. 6-A (2011)
  • [4] DYBAŁA, J., ZIMROZ, R.: Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal. Applied Acoustics, vol. 77 (2014)
  • [5] FIGLUS, T.: Diagnosing the engine valve clearance, on the basis of the energy changes of the vibratory signal. Maintenance Problems, vol. 1 (2009)
  • [6] GREGA, R., et al.: The analyse of vibrations after changing shaft coupling in drive belt conveyer. Zeszyty Naukowe. Transport, vol. 72 (2011)
  • [7] HARACHOVÁ, D., MEDVECKÁ-BEŇOVÁ, S.: Applying the modutarity principle in design of drive systems in mechanotherapeutic devices. Grant journal, vol. 2, no. 2 (2013).
  • [8] HOMIŠIN, J.: Selection of wood waste chipper drive located on automobile chassis. Acta Mechanica Slovaca, vol. 15, no. 3 (2011)
  • [9] KORBICZ, J., et al.: Fault diagnosis, Models, Artificial Intelligence, Applications. Springer-Verlag (2004)
  • [10] MEDVECKÁ-BEŇOVÁ, S., VOJTKOVÁ, J.: Analysis of asymmetric tooth stiff ness in eccentric elliptical gearing. Technolog, vol. 5, no. 4 (2013)
  • [11] Mikulski, J.: Telematics - Support for Transport, Mikulski J. (ed.): Telematics - Support for Transport, Springer Verlag, Berlin Heidelberg, CCIS 471 (2014)
  • [12] Młyńczak, J.: Analysis of intelligent transport systems (ITS) in public transport of upper Silesia, in Mikulski J. (ed), Modern Transport Telematics, Springer Verlag, Berlin Heidelberg, CCIS 239 (2011)
  • [13] Osowski, S.: Methods and tools for data exploration. Btc, Legionowo (2013)
  • [14] Puškár, M., Bigoš, P., Puškárová, P.: Accurate measurements of output characteristics and detonations of motorbike high-speed racing engine and their optimization at actual atmospheric conditions and combusted mixture composition. Measurement, vol. 45 (2012)
  • [15] Tadeusiewicz, R., Chaki, R., Chaki, N.: Exploring Neural Networks with C#. CRC Press, Taylor & Francis Group, Boca Raton (2014)
  • [16] Tadeusiewicz, R., et al.: Neural Networks in Biomedical Engineering. Biomedical Engineering. Basics and Applications. Exit, Warsaw (2013)
  • [17] Tadeusiewicz R., Lu la P.: Introduction to neural networks. StatSoft, Cracow (2001)
  • [18] Urbanský, M., Homišin, J., Krajňák, J.: Analysis of the causes of gaseous medium pressure changes in compression space of pneumatic coupling. Transactions of the Universities of Košice, vol. 2 (2011)
  • [19] Zuber , N., Bajri ć, R., Šostakov , R.: Gearbox faults identification using vibration signal analysis and artificial intelligence methods. Eksploatacja i Niezawodnosc - Maintenance and Reliability, vol. 16, no 1 (2014)
  • [20] Żółtowski, B., Cempel, C.: Machine diagnostics engineering. ITE, Radom (2004)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-970aff5f-4e95-44f7-a2bd-da4b282aca2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.