PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi variable calibration of hydrological model in the upper Omo Gibe basin, Ethiopia

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The calibration of any hydrological model in any river basin is generally performed using a single hydrological variable. Spatially distributed hydrological modeling provides an opportunity to enhance the use of multi-variable calibration models. The objective of this study is to test the efciency of satellite-based actual evapotranspiration in the HBV hydrological model to render the catchment water balance using multi-variable calibration in the upper Omo-Gibe basin in Ethiopia. Five years (2000–2004) meteorological data, streamfow, and actual evapotranspiration (ETa) based on remote sensing were used for calibration and validation purposes. The performance of the HBV model and the efciency of SEBS–ETa were evaluated using certain calibration criteria (objective function). The model is frst calibrated using only streamfow data to test HBV model performance and then calibrated using a multi-variable (streamfow and ETa) dataset to evaluate the efciency of SEBS–ETa. Both model setups were validated in a multi-variable evaluation using streamfow and ETa data. In the frst case, the model performed well enough for streamfow and poor for ETa, while in the latter case, the performance efciency of SEBS–ETa and streamfow data shows satisfactory to good. This implies that the performance of hydrological models is enhanced by employing multi-variable calibration.
Czasopismo
Rocznik
Strony
537--551
Opis fizyczny
Bibliogr. 82 poz.
Twórcy
  • Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
  • Department of Hydraulic and Water Resource Engineering, Wolaita Sodo University, P.O. Box 138, Wolaita Sodo, Ethiopia
autor
  • Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
  • Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
Bibliografia
  • 1. Akhtar M, Ahmad N, Booij MJ (2009) Use of regional climate model simulations as input for hydrological models for the Hindukush–Karakorum–Himalaya region. Hydrol Earth Syst Sci 13:1075–1089
  • 2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapo-transpiration guidelines for computing crop water requirements. FAO irrigation and drainage paper no. 56. Food and Agriculture Organization of the United Nations, Rome, Italy. https://doi.org/10.1016/j.eja.2010.12.001
  • 3. Bastiaanssen WGM, Bandara KMPS (2001) Evaporative depletion assessments for irrigated watersheds in Sri Lanka. Irrig Sci 21(1):1–15. https://doi.org/10.1007/s002710100046
  • 4. Bergström S (1990) Parameter values for the HBV model in Sweden, in Swedish. SMHI Hydrolog Nr28
  • 5. Bergström S (1992) The HBV model—its structure and application. SMHI RH 4, Norrkoping
  • 6. Bergström S, Forsman A (1973) Development of a conceptual deterministic rainfall–runoff-model, vol 4. Munksgaard, Copenhagen
  • 7. Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(2):11–29. https://doi.org/10.1080/00343404.2011.553520
  • 8. Booij MJ (2005) Impact of climate change on river flooding assessed with different spatial model resolutions. J Hydrol 303(1–4):176–198. https://doi.org/10.1016/j.jhydrol.2004.07.013
  • 9. Booij MJ, Krol MS (2010) Balance between calibration objectives in a conceptual hydrological model. Hydrol Sci J 55(6):1017–1032. https://doi.org/10.1080/02626667.2010.505892
  • 10. Boulet G, Kerr Y, Chehbouni A, Kalma JD (2002) Deriving catchment-scale water and energy balance parameters using data assimilation based on extended Kalman filtering. Hydrol Sci J 47(3):449–467. https://doi.org/10.1080/02626660209492946
  • 11. Brutsaert W (1982) Evaporation to the atmosphere theory, history, and application. D. Reidel Publishing Co., Boston
  • 12. Campo L, Caparrini F, Castelli F (2006) Use of multi-platform, multi-temporal remote-sensing data for calibration of a distributed hydrological model: an application in the Arno basin, Italy. Hydrol Process 20(13):2693–2712. https://doi.org/10.1002/hyp.6061
  • 13. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions. Water Resour Res 22(2):199–210
  • 14. Chen JM, Chen X, Ju W, Geng X (2005) Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. J Hydrol 305(1–4):15–39. https://doi.org/10.1016/j.jhydrol.2004.08.029
  • 15. Choi HT, Beven K (2007) Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. J Hydrol 332(3–4):316–336. https://doi.org/10.1016/j.jhydrol.2006.07.012
  • 16. Crow WT, Wood EF, Pan M (2003) Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals. J Geophys Res 108(23):1–12. https://doi.org/10.1029/2002JD003292
  • 17. De Vos NJ, Rientjes THM, Gupta HV (2010) Diagnostic evaluation of conceptual rainfall–runoff models using temporal clustering. Hydrol Proces 24(20):2840–2850. https://doi.org/10.1002/hyp.7698
  • 18. Deckers DLEH, Booij MJ, Rientjes TM, Krol MS (2010) Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall–runoff model. Water Resour Manag 24(14):3961–3985. https://doi.org/10.1007/s11269-010-9642-8
  • 19. Downer CW, Ogden FL (2003) Prediction of runoff and soil moistures at the watershed scale: effects of model complexity and parameter assignment. Water Resour Res 39(3):1–13. https://doi.org/10.1029/2002WR001439
  • 20. Etter S, Strobl B, Seibert J, Ilja Van Meerveld HJ (2018) Value of uncertain streamflow observations for hydrological modelling. Hydrol Earth Syst Sci 22(10):5243–5257. https://doi.org/10.5194/hess-22-5243-2018
  • 21. Fenicia F, Zhang GP, Rientjes T, Hoffman L, Pfiste L, Savenije HHG (2005) Numerical simulations of runoff generation with surface water–groundwater interactions in the Alzette river alluvial plain (Luxembourg). Phys Chem Earth 30(4–5):277–284. https://doi.org/10.1016/j.pce.2004.11.001
  • 22. Franks SW, Beven KJ (1997) Bayesian estimation of uncertainty in land surface-atmosphere flux predictions. J Geophys Res 102(D20):23991–23999
  • 23. Götzinger J, Bárdossy A (2005) Advances in geosciences integration and calibration of a conceptual rainfall–runoff model in the framework of a decision support system for river basin management. Adv Geosci 5:31–35
  • 24. Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34(4):751–763
  • 25. Gupta HV, Bastida LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. J Geophys Res 104(16):19491–19503
  • 26. Gupta HV, Wagener T, Liu Y (2008) Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrol Proces 22(18):3802–3813. https://doi.org/10.1002/hyp
  • 27. Ha LT, Bastiaanssen WGM, van Griensven A, van Dijk AIJM, Senay GB (2018) Calibration of spatially distributed hydrological processes and model parameters in SWAT using remote sensing data and an auto-calibration procedure: a case study in a Vietnamese river basin. Water 10(212):1–21. https://doi.org/10.3390/w10020212
  • 28. Haile AT, Habib E, Rientjes T (2013) Evaluation of the climate prediction center (CPC) morphing technique (CMORPH) rainfall product on hourly time scales over the source of the Blue Nile River. Hydrol Proces 27(12):1829–1839. https://doi.org/10.1002/hyp.9330
  • 29. Harlin J, Kung C (1992) Parameter uncertainty and simulation of design floods in Sweden. J Hydrol 137(1–4):209–230
  • 30. Hartanto IM, van der Kwast J, Alexandridis TK, Almeida W, Song Y, van Andel SJ, Solomatine DP (2017) Data assimilation of satellite-based actual evapotranspiration in a distributed hydrological model of a controlled water system. Int J Appl Earth Obs Geoinf 57:123–135. https://doi.org/10.1016/j.jag.2016.12.015
  • 31. Herman MR, Nejadhashemi AP, Abouali M, Hernandez-Suarez JS, Daneshvar F, Zhang Z, Sharifi A (2018) Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J Hydrol 556:39–49. https://doi.org/10.1016/j.jhydrol.2017.11.009
  • 32. Hollenbeck KJ, Schmugge TJ, Hornberger GM, Wang JR (1996) Identifying soil hydraulic heterogeneity by detection of relative change in passive microwave remote sensing observations. Water Resour Res 32(1):139–148. https://doi.org/10.1029/95WR02916
  • 33. Immerzeel WW, Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. J Hydrol 349(3–4):411–424. https://doi.org/10.1016/j.jhydrol.2007.11.017
  • 34. Immerzeel WW, Gaur A, Zwart SJ (2008) Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agric Water Manag 95:11–24. https://doi.org/10.1016/j.agwat.2007.08.006
  • 35. Islam MM, Sado K (2002) Development priority map for flood countermeasures by remote sensing data with geographic information system. J Hydrol Eng 7(5):346–355. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(346)
  • 36. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B Biol Sci 273(927):593–610. https://doi.org/10.1098/rstb.1976.0035
  • 37. Jia L, Xi G, Liu S, Huang C, Yan Y, Liu G (2009) Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland. Hydrol Earth Syst Sci 13(10):1775–1787
  • 38. Khu S, Madsen H, di Pierro F (2008) Incorporating multiple observations for distributed hydrologic model calibration: an approach using a multi-objective evolutionary algorithm and clustering. Adv Water Resour 31(10):1387–1398. https://doi.org/10.1016/j.advwatres.2008.07.011
  • 39. Kim G, Barros AP (2002) Space-time characterization of soil moisture from passive microwave remotely sensed imagery and ancillary data. Remote Sens Environ 81(2–3):393–403. https://doi.org/10.1016/S0034-4257(02)00014-7
  • 40. Kim KB, Kwon HH, Han D (2018) Exploration of warm-up period in conceptual hydrological modelling. J Hydrol 556:194–210. https://doi.org/10.1016/j.jhydrol.2017.11.015
  • 41. Kite GW, Kouwen N (1992) Watershed modeling using land classifications. Water Resour Res 28(12):3193–3200. https://doi.org/10.1029/92WR01819
  • 42. Kustas WP, Daughtry CST (1990) Estimation of the soil heat flux/net radiation ratio from spectral data. Agric For Meteorol 49(3):205–223
  • 43. Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241
  • 44. Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288. https://doi.org/10.1016/S0022-1694(97)00041-3
  • 45. Madsen H (2000) Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J Hydrol 235(3–4):276–288
  • 46. Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv Water Resour 26(2):205–216
  • 47. Mccabe MF, Franks SW, Kalma JD (2005) Calibration of a land surface model using multiple data sets. J Hydrol 302(1–4):209–222. https://doi.org/10.1016/j.jhydrol.2004.07.002
  • 48. Meixner T, Bastidas LA, Gupta HV, Bales RC (2002) Multicriteria parameter estimation for models of stream chemical composition. Water Resour Res 38(3):1–9
  • 49. Merz R, Blöschl G (2004) Regionalisation of catchment model parameters. J Hydrol 287:95–123. https://doi.org/10.1016/j.jhydrol.2003.09.028
  • 50. Mohaideen MMD, Varija K (2018) Improved vegetation parameterization for hydrological model and assessment of land cover change impacts on flow regime of the upper Bhima basin, India. Acta Geophys 66:697–715. https://doi.org/10.1007/s11600-018-0161-y
  • 51. Monteith JL (1973) Principles of Environmental Physics. Edward Arnold Press, London
  • 52. Montzka C, Canty M, Kunkel R, Menz G, Vereecken H, Wendland F (2008) Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data. J Hydrol 353(3–4):322–334. https://doi.org/10.1016/j.jhydrol.2008.02.018
  • 53. Muthuwatta LP, MudD A, Bos MG, Rientjes THM (2010) Assessment of water availability and consumption in the Karkheh river basin, Iran-using remote sensing and geo-statistics. Water Resour Manag 24(3):459–484. https://doi.org/10.1007/s11269-009-9455-9
  • 54. Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290
  • 55. Nesru M, Nagaraj MK, Shetty A (2020) Assessment of consumption and availability of water in the upper Omo-Gibe basin, Ethiopia. Arab J Geosci 13(13):1–11
  • 56. Ouillon S, Forget P, Froidfond JM, Naudin JJ (1997) Estimating suspended matter concentrations from SPOT data and from field measurements in the Rhone river plume. MTS J 31(2):15–20
  • 57. Parajka J, Merz R, Bloschl G (2007a) Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrol Process 21(4):435–446. https://doi.org/10.1002/hyp.6253
  • 58. Parajka J, Bloschl G, Merz R (2007b) Regional calibration of catchment models: potential for ungauged catchments. Water Resour Res 43(6):1–16. https://doi.org/10.1029/2006WR005271
  • 59. Poméon T, Diekkrüger B, Kumar R (2018) Computationally efficient multivariate calibration and validation of a grid-based hydrologic model in sparsely gauged West African river basins. Water 10(10):1–26. https://doi.org/10.3390/w10101418
  • 60. Qin C, Jia Y, Su Z, Zhou Z, Qiu Y, Suhui S (2008) Integrating remote sensing information into a distributed hydrological model for improving water budget predictions in large-scale basins through data assimilation. Sensors 8(7):4441–4465. https://doi.org/10.3390/s8074441
  • 61. Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol 198(1–4):69–97. https://doi.org/10.1016/S0022-1694(96)03329-X
  • 62. Rientjes THM, Muthuwatta LP, Bos MG, Booij MJ, Bhatti HA (2013a) Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration. J Hydrol 505:276–290. https://doi.org/10.1016/j.jhydrol.2013.10.006
  • 63. Rientjes T, Tamiru A, Almaw A (2013b) Diurnal rainfall variability over the Upper Blue Nile Basin: a remote sensing based approach. Int J Appl Earth Obs Geoinf 21:311–325. https://doi.org/10.1016/j.jag.2012.07.009
  • 64. Romanowicz RJ, Osuch M, Grabowiecka M (2013) On the choice of calibration periods and objective functions: a practical guide to model parameter identification. Acta Geophys 61(6):1477–1503. https://doi.org/10.2478/s11600-013-0157-6
  • 65. Seibert J (1996) HBV light version 2 user’s manual. Stockholm University, Department of Physical Geography and Quaternary Geology, Stockholm, p 32
  • 66. Seibert J (1997) Estimation of parameter uncertainty in the HBV model. Nord Hydrol 28(4/5):247–262
  • 67. Seibert J (1999) Regionalisation of parameters for a conceptual rainfall–runoff model. Agric For Meteorol 98:279–293
  • 68. Shafii M, Tolson B, Matott LS (2014) Uncertainty-based multi-criteria calibration of rainfall–runoff models: a comparative study. Stoch Environ Res Risk Assess 28(6):1493–1510. https://doi.org/10.1007/s00477-014-0855-x
  • 69. Stisen S, Jensen KH, Sandholt I, Grimes DIF (2008) A remote sensing driven distributed hydrological model of the Senegal River basin. J Hydrol 354(1–4):131–148. https://doi.org/10.1016/j.jhydrol.2008.03.006
  • 70. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99. https://doi.org/10.5194/hess-6-85-2002
  • 71. Su Z, Schmugge T, Kustas WP, Massman WJ (2001) An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J Appl Meteorol 40(11):1933–1951. https://doi.org/10.1175/1520-0450(2001)040%3c1933:AEOTMF%3e2.0.CO;2
  • 72. Tait AB, Hall DK, Foster JL, Armstrong RL (2000) Utilizing multiple datasets for snow-cover mapping. Remote Sens Environ 72(1):111–126. https://doi.org/10.1016/S0034-4257(99)00099-1
  • 73. Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S (2001) A framework for development and application of hydrological models. Hydrol Earth Syst Sci 5(1):13–26. https://doi.org/10.5194/hess-5-13-2001
  • 74. Wagener T, Mcintyre N, Lees MJ, Wheater HS, Gupta HV (2003) Towards reduced uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis. Hydrol Proces 17(2):455–476. https://doi.org/10.1002/hyp.1135
  • 75. Wale A, Rientjes THM, Gieske ASM, Getachew HA (2009) Ungauged catchment contributions to Lake Tana’ s water balance. Hydrol Process 23(26):3682–3693. https://doi.org/10.1002/hyp
  • 76. Wang Y, Li X (2011) Sensible heat flux estimation using surface energy balance system (SEBS), modis products, and NCEP reanalysis data. In: International geoscience and remote sensing symposium (IGARSS), no 1, pp 4269–4272. https://doi.org/10.1109/igarss.2011.6050174
  • 77. Wang J, Price KP, Rich PM (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int J Remote Sens 22(18):3827–3844. https://doi.org/10.1080/01431160010007033
  • 78. Winsemius HC, Savenije HHG, Bastiaanssen WGM (2008) Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins? Hydrol Earth Syst Sci 12:1403–1413
  • 79. Wu X, Zhou J, Wang H, Li Y, Zhong B (2015) Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid Northwestern China. Hydrol Process 29(9):2243–2257. https://doi.org/10.1002/hyp.10365
  • 80. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204(1–4):83–97
  • 81. Zhao J, Chen X, Zhang J, Zhao H, Song Y (2019) Higher temporal evapotranspiration estimation with improved SEBS model from geostationary meteorological satellite data. Sci Rep 9(1):1–15. https://doi.org/10.1038/s41598-019-50724-w
  • 82. Zhong L, Xu K, Ma Y, Ziyu H, Wang X, Ge N (2019) Evapotranspiration estimation using surface energy balance system model: a case study in the Nagqu River Basin. Atmosphere 10(268):1–13. https://doi.org/10.3390/atmos10050268
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96ef8a3c-54b8-41d8-b727-398c91575611
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.