PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analytical methods application to the study of tube drawing processes with fixed conical inner plug: Slab and Upper Bound Methods

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper analyses the thin-walled tube drawing processes made in conical converging dies with fixed inner plugs. Design/methodology/approach: The analysis has been made by analytical methods. Concretely, the Slab Method (SM), with and without friction effects, and the Upper Bound Method (UBM) have been appliced. In this last case, the plastic deformation zone has been modelled by Triangular Rigid Zones (TRZ). The friction between the out surface of the tube and the die, and between the inner surface of the tube and the plug has been modelled by Coulomb friction. Besides, the change in the diameter of the tube has been considered negligible during the process, then, the forming process can be assumend that it is made under a state of plane strain. Findings: The results obtained by each method have been compared between them and, besides, with the obtained ones by the Finite Element Method (FEM) and the experimental ones extract from the literature about the theme. It has been able to be proven that all of them are reasonably close to a value for a certain set of parameters values. Research limitations/implications: This work is a first approache to the problem. As suggestion for future researches it is possible to remark a study of the different triangular rigid zones configurations in order to identify the TRZ pattern that requires smaller energy consumption. Practical implications: Unless it was needed to know a great number of outputs, the analytical method scan be a good option and, especially, the Upper Bound Method since, besides of completing and improving the classical analysis of other metal forming processes previously. Originality/value: The paper is orginal since the bibliographical review has allowed testing that previous works about the tubes drawing analysis made by the Upper Bound Method under plane strain and Coulomb friction conditions did not exist until the moment.
Rocznik
Strony
119--130
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Manufacturing Engineering, National Distance University of Spain (UNED), Juan del Rosal 12, 28040, Madrid, Spain
Bibliografia
  • [1] A.M. Camacho, R. Domingo, E.M. Rubio and C. González, J. Mat. Proc. Tech. 164-165 2005, 1167-1174.
  • [2] B. Avitzur, Handbook of Metal forming Processes, John &Wiley, 1983.
  • [3] B. Avitzur, Metal Forming: The Application of Limit Analysis, Marcel Dekker, Inc., New York, 1980.
  • [4] B. Tomov and R. Radev, J. Mat. Proc. Tech. 157-158 2004, 617-619.
  • [5] B. Tomov, R. Minev, R. Radev and V. Gagov, J. Mat. Proc. Tech. 133 (1-2) 2003, 199-202.
  • [6] C.E. Snee, Iron and Steel Engr. 33 (1956) 124-133.
  • [7] C.J. Luis, J. León and R. Luri, J. Mat. Proc. Tech. 164-165 2005, 1218-1225.
  • [8] C.W. Wu, and R.Q. Hsu, Int. J. Mech. Sciences 42 (2000) 473-486.
  • [9] E. Bayraktar, N. Isac and G. Arnold, J. Mat. Proc. Tech. 162-163 2005, 471-476.
  • [10] E. Shaghouei, D.C. Webb and Kormi K., J. Mat. Proc. Tech. 55(3-4) (1995) 391-407.
  • [11] E. Siebel, and E. Weber, Stahl Eisen 55 (1935) 331.
  • [12] E.M. Rubio, A.M. Camacho, L. Sevilla and M.A. Sebastián, J. Mat. Proc. Tech. 162-163 2005, 551-557.
  • [13] E.P. Polushkin, Trans. Amer. Soc. Metals 22 (1934) 635-656.
  • [14] G. Ambrogio, L. De Napoli, L. Filice, F. Gagliardi and M. Muzzupappa, J. Mat. Proc. Tech. 162-163 2005, 156-162.
  • [15] G. Ambrogio, L. Filice, G. Palumbo and S. Pinto, J. Mat. Proc. Tech. 162-163 2005, 454-460.
  • [16] G. Espey and G. Sachs, J. Applied Mechanis 14 (1947) 81-87.
  • [17] G. Palumbo and L. Tricarico, J. Mat. Proc. Tech. 164-165 2005, 1089-1098.
  • [18] G. Sachs and G. Espey, Trans. ASME, 69 (1947) 139-143.
  • [19] G. Sachs and W.M. Baldwin, Trans. Am. Soc. Mech. Engrs. 68 (1946) 647-654.
  • [20] G. Sachs, and W.M. Baldwin, Trans. Am. Soc. Mech. Engrs. 68 (1946) 655-662.
  • [21] G. Sachs, J.D. Lubahn and D.P. Tracy, J. Applied Mechanis 11 (1944) 199-210.
  • [22] G.G. Moore and J.F. Wallace, Proc. Inst. Mech. Engrs. 182, (1967-68) 19-32.
  • [23] G.J. Kang, W.J. Song, J. Kim, B.S. Kang and H.J. Park, J. Mat. Proc. Tech. 164-165 2005, 1212-1217.
  • [24] G.P. Pires, M.H. Robert and R. Arrieux, J. Mat. Proc. Tech. 157-158 2004, 596-603.
  • [25] G.W. Rowe, Conformado de metales, Urmo, Bilbao, 1977.
  • [26] H.W. Swift, Phil. Mag. Ser., 11 (1949) 883-895.
  • [27] I.F. Collins and B.K. Williams, Int. J. Mech. Sci. 27(4) (1985) 225-233.
  • [28] J. Bartnicki and Z. Pater, J. Mat. Proc. Tech. 164-165 2005, 1154-1159.
  • [29] J. Gronostajski, A. Matuszak, A.Niechajowicz and Z. Zimniak, J. Mat. Proc. Tech. 157-158 2004, 502-507.
  • [30] J. Niziol and A. Świątoniowski, J. Mat. Proc. Tech. 162-163 2005, 546-550.
  • [31] J.D. Jevons, The metallurgy of deep drawing and pressing, 2ª Ed., Chapman&Hall, 1945.
  • [32] J.E. Flinn, Trans. Am. Soc. Mech. Engrs. (1969) 792-804.
  • [33] J.W. Park, Y.H. Kim and W.B. Bae, J. Mat. Proc. Tech. 72 (1) (1997) 94-101.
  • [34] K. Sawamiphakdi, G.D. Lahoti and P.K. Kropp, J. Mat. Proc. Tech. 27(1-3) (1991) 179-190.
  • [35] K. Yoshida, M. Watanabe and H. Ishikawa, J. Mat. Proc. Tech. 118 (2001) 251-255.
  • [36] K.K. Um and D.N. Lee, J. Mat. Proc. Tech. 63 (1997) 43-48.
  • [37] L. Sadok, J. Kusiak, M. Pako and M. Rumiski, J. Mat. Proc. Tech. 60 (1-4) (1996) 161-166.
  • [38] L. Tomesani, J. Mat. Proc. Tech. 64 (1-3) 1997, 379-386.
  • [39] M. Goodarzi, T. Kuboki, and M. Murata, J. Mat. Proc. Tech. 162-163 2005, 492-497.
  • [40] M. Li, Z. Sun, M. Li and H. Yang, J. Mat. Proc. Tech. 160 (3) (2005) 396-400.
  • [41] M. Murata, T. Kuboki and T. Murai, J. Mat. Proc. Tech. 162-163 2005, 540-545.
  • [42] M. Nastran and K. Kuzman, J. Mat. Proc. Tech. 133 (1-2) 2003, 166-173.
  • [43] M. Rumiski, J. Uksza, J. Kusiak and M. Pako, J. Mat. Proc. Tech. 80-81 (1998) 683-689.
  • [44] M.H. Robert and M. Adamiak, Preliminary studies on the suitability of rheocast Al alloys for deep drawing, J. Mat. Proc. Tech. 109 (1-2) 2001, 168-173.
  • [45] O. Hoffman and G. Sachs, Introduction to the theory of plasticity for engineers, Mac Graw-Hill Book Company, Inc., New Yor, Tornto, London, 1953.
  • [46] P. Green, Proc. Inst. Mech. Engrs. 174 (1960) 847-864.
  • [47] P. Vacher, R. Arrieux, L. Tabourot, J. Mat. Proc. Tech. 78 (1-3) 1998, 190-197.
  • [48] P.K. Kar, and N.S. Das, Int. J. Mech. Sciences 39(8) (1997) 925-934.
  • [49] P.K. Seo and C.G. Kang, J. Mat. Proc. Tech. 162-163 2005, 402-409
  • [50] R. Hill, The mathematical theory of plasticity, Oxford University Press, London, 1950.
  • [51] R.A.C. Slater, Engineering Plasticity: Theory and Application to Metal Formig Processes, The MacMillan Press Ltd., London, 1977, 363-375.
  • [52] S. Elion and J.M. Alexander, Engineer, 211 (1961) 682-695.
  • [53] S.K. Sahoo, P.K. Kar and K.C. Singh, J. Mat. Proc. Tech. 75(1-3) (1998) 75-80.
  • [54] S.K. Sahoo, P.K. Kar and K.C. Singh, J. Mat. Proc. Tech. 91(1-3) (1999) 105-110.
  • [55] S.W. Lee, J. Mat. Proc. Tech. 130-131 (2002), 47-53.
  • [56] S.Y. Chung and H.W. Swift, J. Iron Steel Inst. 170 (1952) 29-41.
  • [57] S.Y. Chung and H.W. Swift, Proc. Inst. Mech. Engrs. 165 (1951) 199-223.
  • [58] T. Oczkowicz, and S. Tkaczyk, J. Mat. Proc. Tech. 64 (1-3) 1997, 303-310.
  • [59] T.Z. Blazynski and I.M. Cole, Proc. Inst. Mech. Engrs. 174 (1960) 797-804.
  • [60] W. Johnson and P.B. Mellor, Engineering plasticity, John Wiley&Sons, (1983).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96801835-6aa6-40cf-8bc4-24c495347b86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.