PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Does water lubrication affect friction differently for rocks and soils? Evidence and open questions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper focuses on the shear strength exhibited by rocks and soils when sliding along dry and wet surfaces, with this mechanism of failure being strongly related to the water lubrication phenomenon. It is well known that the frictional behaviour of geomaterials requires multiscale investigation. Under this perspective, experimental evidence of both friction at the grain scale (i.e. interparticle friction) and friction along sliding surfaces of rock and granular soil samples (i.e. surface friction) are analysed by using data from the literature. The review is addressed at linking different scales, stating the differences between rocks and soils in terms of frictional response to sliding and trying to point out still open problems for the research.
Słowa kluczowe
Wydawca
Rocznik
Strony
211--223
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
autor
  • Politecnico di Bari, Bari, Italy
autor
  • PhD student, Polytechnique Montréal, Canada
autor
  • Politecnico di Bari, Bari, Italy
Bibliografia
  • [1] Alejano, L. R., González, J., & Muralha, J. (2012). Comparison of different techniques of tilt testing and basic friction angle variability assessment. Rock Mechanics and Rock Engineering, 45(6), 1023–1035.
  • [2] Altuhafi, F., & Coop, M. R. (2011). Changes to particle characteristics associated with the compression of sands. Géotechnique, 61(6), 459–471.
  • [3] Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), 1–20.
  • [4] Barton, N. (1971). A relationship between joint roughness and joint shear strength. Rock Fracture-Proc, Int. Symp. on Rock Mechanics, Nancy, France,
  • [5] Barton, N. (1973). Review of a new shear-strength criterion for rock joints. Engineering geology, 7(4), 287–332.
  • [6] Blair, D. L., Mueggenburg, N. W., Marshall, A. H., Jaeger, H. M., & Nagel, S. R. (2001). Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction. Physical review E, 63(4), 041304.
  • [7] Bowden, F. P., & Tabor, D. (1964). The Friction and Lubrication of Solids-Part II. Oxford, England, University Press.
  • [8] Braun, P., Tzortzopoulos, G., & Stefanou, I. (2021). Design of Sand-Based, 3-D-Printed Analog Faults With Controlled Frictional Properties. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB020520.
  • [9] Bromwell, L. G. (1966). The friction of quartz in high vacuum. Research in Earth Physics (Research Report R66-18). Massachusetts Institute of Technology.
  • [10] Calvetti, F. (2008). Discrete modelling of granular materials and geotechnical problems. European Journal of Environmental and Civil Engineering, 951–965.
  • [11] Calvetti, F., Di Prisco, C., & Nova, R. (2004). Experimental and numerical analysis of soil–pipe interaction. Journal of geotechnical and geoenvironmental engineering, 130(12), 1292–1299.
  • [12] Carpinteri, A., & Pugno, N. (2005). Are scaling laws on strength of solids related to mechanics or to geometry? Nature materials, 4(6), 421–423.
  • [13] Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., & Pambaguian, L. (2014). Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430–450.
  • [14] Cherblanc, F., Berthonneau, J., Bromblet, P., & Huon, V. (2016). Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mechanics and Rock Engineering, 49(6), 2033–2042.
  • [15] Coulomb, C. A. (1776). Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture. Paris: De l’Imprimerie Royale.
  • [16] Desideri, A., Fontanella, E., & Pagano, L. (2013). Pore water pressure distribution for use in stability analyses of earth dams. In Landslide Science and Practice (pp. 149–153). Springer.
  • [17] Diao, Y., & Espinosa-Marzal, R. M. (2016). Molecular insight into the nanoconfined calcite–solution interface. Proceedings of the National Academy of Sciences, 113(43), 12047–12052.
  • [18] Diao, Y., & Espinosa-Marzal, R. M. (2018). The role of water in fault lubrication. Nature communications, 9(1), 1–10.
  • [19] Dickey, J. (1966). Frictional Characteristics of Quartz.(MIT) SB thesis Massachusetts Institute of Technology Cambridge, MA, USA].
  • [20] Dove, P. M. (1995). Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses. Journal of Geophysical Research: Solid Earth, 100(B11), 22349–22359.
  • [21] Feng, X.T., Chen, S., & Li, S. (2001). Effects of water chemistry on microcracking and compressive strength of granite. Int J Rock Mech Min Sci, 38: 557–68.
  • [22] Gutierrez, M., Øino, L., & Nygaard, R. (2000). Stress-dependent permeability of a de-mineralised fracture in shale. Marine and Petroleum Geology, 17(8), 895–907.
  • [23] Ham, T.-G., Nakata, Y., Orense, R. P., & Hyodo, M. (2010). Influence of gravel on the compression characteristics of decomposed granite soil. Journal of Geotechnical and Geoenvironmental Engineering, 136(11), 1574–1577.
  • [24] Horn, H., & Deere, D. (1962). Frictional characteristics of minerals. Geotechnique, 12(4), 319–335.
  • [25] Hua, W., Dong, S., Li, Y., & Wang, Q. (2016). Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone. Engineering Fracture Mechanics, 153, 143–150.
  • [26] Huang, X., Hanley, K. J., O’Sullivan, C., & Kwok, C. Y. (2014). Exploring the influence of interparticle friction on critical state behaviour using DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 38(12), 1276–1297.
  • [27] Israelachvili, J. (2001). Tribology of ideal and non-ideal surfaces and fluids. Fundamentals of Tribology and Bridging the Gap Between the Macro-and Micro/Nanoscales, 631–650.
  • [28] Israelachvili, J. N., & Pashley, R. M. (1983). Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 306(5940), 249–250.
  • [29] Jaeger, J., Cook, N., & Zimmerman, R. (2007). Fundamentals of rock mechanics, 4th edn Blackwell. Maiden, MA.
  • [30] Jappelli, R. (2003). Le costruzioni geotecniche per le grandi dighe in Italia. Rivista Italiana di Geotecnica (Italian Geotechnical Journal), 37(2), 17–78.
  • [31] Jappelli, R. (2005). Monumental dams. In Mechanical modelling and computational issues in civil engineering (pp. 1–102). Springer.
  • [32] Karde, V., & Ghoroi, C. (2021). Humidity induced interparticle friction and its mitigation in fine powder flow. Particulate Science and Technology, 1–11.
  • [33] Kim, D., & Suh, N. (1991). On microscopic mechanisms of friction and wear. Wear, 149(1–2), 199–208.
  • [34] Lajtai, E., Schmidtke, R., & Bielus, L. (1987). The effect of water on the time-dependent deformation and fracture of a granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,
  • [35] Li, B., Ye, X., Dou, Z., Zhao, Z., Li, Y., & Yang, Q. (2020). Shear strength of rock fractures under dry, surface wet and saturated conditions. Rock Mechanics and Rock Engineering, 53(6), 2605–2622.
  • [36] Li, W., Kwok, C., Sandeep, C., & Senetakis, K. (2019). Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro-to macro-scales. Powder technology, 342, 907–916.
  • [37] Marone, C., & Scholz, C. (1989). Particle-size distribution and microstructures within simulated fault gouge. Journal of Structural Geology, 11(7), 799–814.
  • [38] Marzulli, V., & Cafaro, F. (2019). Geotechnical properties of uncompacted DNA-1A lunar simulant. Journal of Aerospace Engineering, 32(2), 04018153.
  • [39] Marzulli, V., Sandeep, C., Senetakis, K., Cafaro, F., & Pöschel, T. (2021). Scale and water effects on the friction angles of two granular soils with different roughness. Powder technology, 377, 813–826.
  • [40] Mei, C., & Wu, W. (2021). Fracture asperity evolution during the transition from stick slip to stable sliding. Philosophical Transactions of the Royal Society A, 379(2196), 20200133.
  • [41] Miura, N., & Yamanouchi, T. (1975). Effect of water on the behavior of a quartz-rich sand under high stresses. Soils and Foundations, 15(4), 23–34.
  • [42] Motta, E. (1994). Generalized Coulomb active-earth pressure for distanced surcharge. Journal of Geotechnical Engineering, 120(6), 1072–1079.
  • [43] Murdock, C. C. (1944). Coulomb's Law and the Dielectric Constant. American Journal of Physics, 12(4), 201–203.
  • [44] Nardelli, V., Coop, M., Andrade, J., & Paccagnella, F. (2017). An experimental investigation of the micromechanics of Eglin sand. Powder technology, 312, 166–174.
  • [45] Newmark, N. M. (1965). Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139–160.
  • [46] Ning, L., Yunming, Z., Bo, S., & Gunter, S. (2003). A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics and Mining Sciences, 40(2), 243–249.
  • [47] O’Sullivan, C. (2011). Particulate discrete element modelling: a geomechanics perspective. CRC Press.
  • [48] Ojo, O., & Brook, N. (1990). The effect of moisture on some mechanical properties of rock. Mining Science and Technology, 10(2), 145–156.
  • [49] Otsubo, M., & O’Sullivan, C. (2018). Experimental and DEM assessment of the stress-dependency of surface roughness effects on shear modulus. Soils and foundations, 58(3), 602–614.
  • [50] Pellet, F., Keshavarz, M., & Boulon, M. (2013). Influence of humidity conditions on shear strength of clay rock discontinuities. Engineering Geology, 157, 33–38.
  • [51] Prölß, M., Schwarze, H., Hagemann, T., Zemella, P., & Winking, P. (2018). Theoretical and experimental investigations on transient run-up procedures of journal bearings including mixed friction conditions. Lubricants, 6(4), 105.
  • [52] Pugno, N. M. (2007). A general shape/size-effect law for nanoindentation. Acta Materialia, 55(6), 1947–1953.
  • [53] Qiao, L., Wang, Z., & Huang, A. (2017). Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects. Rock Mechanics and Rock Engineering, 50(2), 255–267.
  • [54] Rattez, H., Stefanou, I., Sulem, J., Veveakis, M., & Poulet, T. (2018). Numerical analysis of strain localization in rocks with thermo-hydro-mechanical couplings using cosserat continuum. Rock Mechanics and Rock Engineering, 51(10), 3295–3311.
  • [55] Røyne, A., Dalby, K. N., & Hassenkam, T. (2015). Repulsive hydration forces between calcite surfaces and their effect on the brittle strength of calcite-bearing rocks. Geophysical Research Letters, 42(12), 4786–4794.
  • [56] Rymuza, Z., & Pytko, S. (2012). The effect of scale in tribological testing. Journal of Materials Research and Technology, 1(1), 13–20.
  • [57] Sandeep, C., Marzulli, V., Cafaro, F., Senetakis, K., & Pöschel, T. (2019). Micromechanical behavior of DNA-1A lunar regolith simulant in comparison to Ottawa sand. Journal of Geophysical Research: Solid Earth, 124(8), 8077–8100.
  • [58] Sandeep, C., & Senetakis, K. (2019). An experimental investigation of the microslip displacement of geological materials. Computers and Geotechnics, 107, 55–67.
  • [59] Senetakis, K., Coop, M. R., & Todisco, M. C. (2013). The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals. Soils and Foundations, 53(5), 746–755.
  • [60] Skinner, A. (1969). A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique, 19(1), 150–157.
  • [61] Soga, K., & O’SULLIVAN, C. (2010). Modeling of geomaterials behavior. Soils and foundations, 50(6), 861–875.
  • [62] Suiker, A. S., & Fleck, N. A. (2004). Frictional collapse of granular assemblies. J. Appl. Mech., 71(3), 350–358.
  • [63] Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1), 43–53.
  • [64] Ulusay, R., & Karakul, H. (2016). Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing. Bulletin of Engineering Geology and the Environment, 75(4), 1683–1699.
  • [65] Uygar, E., & Doven, A. G. (2006). Monotonic and cyclic oedometer tests on sand at high stress levels. Granular Matter, 8(1), 19–26.
  • [66] Wasantha, P. L., & Ranjith, P. G. (2014). Water-weakening behavior of Hawkesbury sandstone in brittle regime. Engineering Geology, 178, 91–101.
  • [67] Wils, L., Van Impe, P., & Haegeman, W. (2015). One-dimensional compression of a crushable sand in dry and wet conditions. 3rd International Symposium on Geomechanics from Micro to Macro,
  • [68] Wong, L. N. Y., Maruvanchery, V., & Liu, G. (2016). Water effects on rock strength and stiffness degradation. Acta Geotechnica, 11(4), 713–737.
  • [69] Yimsiri, S., & Soga, K. (2010). DEM analysis of soil fabric effects on behaviour of sand. Géotechnique, 60(6), 483–495.
  • [70] Zhao, C., Niu, J., Zhang, Q., Zhao, C., & Zhou, Y. (2019). Failure characteristics of rock-like materials with single flaws under uniaxial compression. Bulletin of Engineering Geology and the Environment, 78(1), 593–603.
  • [71] Zhou, Z., Cai, X., Cao, W., Li, X., & Xiong, C. (2016). Influence of water content on mechanical properties of rock in both saturation and drying processes. Rock Mechanics and Rock Engineering, 49(8), 3009–3025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-95dcd19e-6b5f-4822-8aa6-1fcceb4d4ea4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.