PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of inhomogeneity by the observation of the surface of the material simulating biological tissues

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a research which involves the observation of the movement of points presented on a material surface under the influence of mechanical extortion. Tests were performed using two 15 mm silicone layers, one of which contained 1 mm thick elements of nitrile-butadiene rubber. Analysed materials were structurally heterogeneous tissue phantoms. Test results that were obtained indicated that the developed method allows detecting inhomogeneity and its approximate location, what may be used in pathological state prevention.
Rocznik
Strony
art. no. 20180043
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Wroclaw University of Science and Technology, Department of Mechanics, Materials Science and Engineering, Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Department of Mechanics, Materials Science and Engineering, Wrocław, Poland
Bibliografia
  • [1] Lech Ł, Iwaniec M. The meaning of the piezoelectric and streaming potential in bone remodeling. Vib Phys Syst 2010;24:251-8.
  • [2] Meyers M, Chen P, Lin A, Seki Y. Biological materials: structure and mechanical properties. Mater Sci 2008;53:1-206.
  • [3] Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Wiley Interdisciplinary Rev: Syst Med 2014;6:371-88.
  • [4] Joachim HIM, Fluhr W, Elsner P, Berardesca E. Bioengineering of the skin: water and the stratum corneum. Boca Raton, FL: CRC Press, 2004.
  • [5] Guo X, Imhof RE. Spectroscopic study of water-keratin interactions in stratum corneum. Japan Anal Chem 2001;17:342-5.
  • [6] Flynn C, Stavness I, Lloyd J, Fels S. A finite element model of the face including an orthotropic skin model under in vivo tension. Comput Methods Biomech Biomed Eng 2015;18:571-82.
  • [7] Ogiela L, Tadeusiewicz R, Ogiela MR. Cognitive approach to visual data interpretation in medical information and recognition systems, advances in machine vision, image processing, and pattern analysis. Berlin: Springer, 2006, pp. 244-50.
  • [8] Jemal A, Murray, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics. CA: Cancer J Clin 2005;55:10-30.
  • [9] Lee GYH, Lim CT. Biomechanics approaches to studying human diseases. Trends Biotechnol 2007;25:111-18.
  • [10] Li QS, Lee GYH, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 2008;374:609-13.
  • [11] National Cancer Institute (U.S.). Breast Cancer Progress Review Group. Charting the Course: Priorities for Breast Cancer Research: Report of the Breast Cancer Progress Review Group. [United States]: Breast Cancer Progress Review Group, 1998.
  • [12] Weinreb J, Newstead G. MR imaging of the breast. Radiology 1995;196:563-610.
  • [13] Harvey JA, Fajardo LL, Innis CA. Previous mammograms in patients with impalpable breast carcinoma: retrospective vs blinded interpretation. Am J Roentgenol 1993;161:1167-72.
  • [14] Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology 1992;184:613-17.
  • [15] Khalkhali I, Villanueva-Meyer J, Edell SL, Connolly JL, Schnitt SJ, Baum JK, et al. Diagnostic accuracy of 99mTc-sestamibi breast imaging: multicenter trial results. Nuclear Med 2000;41:1973-9.
  • [16] Heywang SH, Hahn D, Schmidt H, Krischke I, Eiermann W, Bassermann R, et al. MR imaging of the breast using gadolinium-DTPA. J Comput Assisted Tomogr 1986;10:199-204.
  • [17] Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, et al. Elastography of breast lesions: initial clinical results. Radiology 1997;202:79-86.
  • [18] Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, et al. Biophysical bases of elasticity imaging. Acoustical imaging. Boston, MA: Springer, 1995, pp. 223-40.
  • [19] McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL. MR elastography of breast cancer: preliminary results. Am J Roentgenol 2002;178:1411-17.
  • [20] Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging 1998;20:260-74.
  • [21] Nunes LW, Schnall MD, Orel SG, Hochman MG, Langlotz CP, Reynolds CA, et al. Breast MR imaging: interpretation model. Radiology 1997;202:833-41.
  • [22] Daniel BL, Yen YF, Glover GH, Ikeda DM, Birdwell RL, Sawyer-Glover AM, et al. Breast disease: dynamic spiral MR imaging. Radiology 1998;209:499-509.
  • [23] Plewes DB, Bishop J, Samani A, Sciarretta J. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol 2000;45:1591-610.
  • [24] Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound, CT MRI 2018;39:25-34.
  • [25] Pavithra PR, Ravichandran KS, Sekar KR, Manikandan R. The effect of thermography on breast cancer detection. Syst Pharm 2018;9:10-6.
  • [26] Ziobro J. Multiaxial stress and strain analysis of the rubber based on the natural rubber. Scientific Papers of the Rzeszow University of Technology. Scientific 2013;288:197-206.
  • [27] Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin - I. Experimental system. J Biomech 1974;7:29-34.
  • [28] Krasowska M, Jańczuk B, Wójcik W. Theoretical aspects of adhesion phenomena. Chemical News 2003;57:156-84.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-957e358f-8577-437b-a3a2-15d3ded01d9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.