Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A flight of a UAV formation is an efficient way to implement surveillance and reconnaissance operations. The usage of a few UAVs as a formation instead of a single vehicle allows creating a distributed network of sensors, which decreases the duration of flight missions and enlarges a total field of view. From a practical point of view, implementations of formation flights require taking into account several separate aspects of flight of UAV such as a quick take-off of several aircraft, aggregating all UAVs in the same space to create swarm and collective flight of the formation towards the area of a surveillance mission. The paper presents the results of researches and experiments carried out towards practical solutions to those aspects. A magnetic launcher is an excellent appliance to put UAV in the air, and its operation could be repeated quickly. Hence, it is ideal to be used in a formation flight. The leader-follower approach based on two-stage switching control is an effective method to aggregate UAVs in the same space while they are flying over large areas. Whereas, the decentralized control of aerial flocking can be used to achieve a coherent flight of UAV formation, which is able to self-organize. Results from simulations and experiments show the effectiveness of each presented aspect and prove their usability in the implementation of formation flights.
Czasopismo
Rocznik
Tom
Strony
399--417
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
- Air Force Institite of Technology, Instytut Techniczny Wojsk Lotniczych
autor
- Air Force Institite of Technology, Instytut Techniczny Wojsk Lotniczych
autor
- Białystok University of Technology, Politechnika Białostocka
autor
- Białystok University of Technology, Politechnika Białostocka
autor
- Białystok University of Technology, Politechnika Białostocka
Bibliografia
- 1. Ambroziak L., Gosiewski Z.: Two stage switching control for autonomous formation flight of unmanned aerial vehicles. Aerospace Science and Technology, 46, 2015: 221- 226
- 2. Bangash Z. A., Sanchez R. P., Ahmed A.: Aerodynamics of Formation Flight, Journal of Aircraft, Vol. 43, No. 4, July–August, 2006
- 3. Basu P., Redi J., Shurbanov V.: Coordinated flocking of UAVs for improved connectivity of mobile ground nodes. Proceedings of the Military Communications Conference MILCOM 2004, Monterey, CA, USA, 31 October - 3 November 2004, IEEE Press: 1628–1634.
- 4. Boskowic J.D., Sun Z., Song Y.D.: An adaptive reconfigurable formation flight control design. Proceedings of the American Control Conference, 2003: 284–289
- 5. Cai J., Sun S. Wu.: UAVs Formation Flight Control Based on Behavior and Virtual Structure. AsiaSim 2012, Communications in Computer and Information Science 2012: 429-438
- 6. Cheng Z., Necsulescu D.S., Kim B., Sasiadek J.: Nonlinear control for UAV formation flying. Proceedings of the 17th World Congress of the International Federation of Automatic Control. Seoul, Korea, July 6–11, 2008: 791–796
- 7. Ciesluk J., Ambroziak L.: Vision system for formation flight of unmanned aerial vehicles. Group Flights and Launchers for UAVs. Ed. Z. Gosiewski. Bialystok University of Technology, 2013: 370–386 (in Polish)
- 8. Falkowski K., Sibilski K.: Magnetic Levitation System for Take-off and Landing Airplane –Project GABRIEL. Proceedings of the 2013 CONSOL Conference in Rotterdam, 2013, https://www.comsol.com/paper/download/182061/falkowski_paper.pdf
- 9. Falkowski K., Sibilski K.: System take-off and landing with magnetic suspension – project GABRIEL. RUTMech, 30, 85(3/13), (DOI:10.7862/rm.2013.23), JulySeptember, 2013: 249-258
- 10. Flack A., Ákos Zs., Nagy M., Vicsek T., Biro D.: Robustness of flight leadership relations in pigeons. Animal Behaviour 86(4), 2014: 723–732
- 11. Galzi D. Shtessel Y.: UAV formations control using high order sliding modes. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.2005-6367, (DOI: 10.2514/6.2005-6367), 2005: AIAA 2005-6367 TP
- 12. Giulietti F., Pollini L., Innocenti M.: Autonomous formation flight. IEEE Control Systems Magazine, 2000, 20(6): 34–44
- 13. Gosiewski Z., Ambroziak L.: UAV autonomous formation flight experiment with Virtual Leader control structure. Solid State Phenomena. 198, 2013: 254–259
- 14. Iglesias S., Mason W.H.: Optimum spanloads in formation flight. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.2002-258, (DOI: 10.2514/6.2002-258), 2002: AIAA 2002-0258 TP
- 15. Johnson N., Calise A.J.: Approaches to vision-based formation control. Proceedings of the IEEE Conference on Decision and Control, 2004
- 16. Kondratiuk M., Gosiewski Z.: Laboratory and field tests of the magnetic coil launcher for micro aerial vehicles. Scientific aspects of unmanned mobile vehicle (Eds. Koruba Z., Krzysztofik I., and Stefański P.), Kielce University of Technology, 2014: 89-107
- 17. Kondratiuk M.: Concept of the magnetic launcher for unmanned aerial vehicles of mass up to 25 kg. Proceedings of the 10th International conference: Mechatronics Systems and Materials: MSM’2014. Opole, 2014
- 18. Kownacki C., Ołdziej D.: Fixed-wing UAVs Flock Control through Cohesion and Repulsion Behaviours Combined with a Leadership, International Journal of Advanced Robotic Systems, 13:36, 2016, (DOI: 10.5772/62249)
- 19. Kownacki C., Ołdziej D.: Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles. Advances in Aerospace Guidance, Navigation and Control. Springer, 2015: 415-431
- 20. Kushleyev A., Mellinger D., Powers C., Kumar V.: Towards a swarm of agile micro quadrotors. Autonomous Robots, 35(4), 2013: 287-300
- 21. Ładyżyńska-Kozdraś E., Sibilska-Mroziewicz A.M., Falkowski K.: Investigation of mechanical properties of a rigid body in magnetic levitation state. Challenges of Modern Technology, 6(1), e-ISSN 2353-4419, http://journal.young-scientists.eu, 2015: 23 – 27
- 22. Li B., Liao X.H., Sun Z., Li Y.D., Song Y.F.: Robust autopilot for close formation flight of multi-UAVs. Proceedings of the Thirty-Eighth South-eastern Symposium SSST’98. IEEE System Theory, 2006: 294–298
- 23. Li C.: Decentralized cooperative control for multivehicle without velocity measurement. Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 2009
- 24. Linorman N.H, Liu M.H.T.: Formation UAV flight control using virtual structure and motion synchronization. Proceedings of the American Control Conference, 2008: 1782–1787
- 25. Low Ch.B., Ng Q.S.: A flexible virtual structure formation keeping control for fixedwing UAVs. 9th IEEE International Conference on Control and Automation, Santiago, 19-21 December, 2011: 621-626
- 26. McCammish C., Pachter M.D., Azzo J.J., Reyna V.: Optimal formation flight control. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.1996-3868, (DOI: 10.2514/6.1996-3868), 1996: AIAA 96-3868 TP
- 27. Norman H.M., Le Liu, Hugh H.T.: Formation UAV Flight Control using Virtual Structure and Motion. Proceedings of the American Control Conference, June 11-13 2008, Seattle, USA: 1782-1787
- 28. Pilz U., Popov A.P., Werner H.: Robust controller design for formation flight of quadrotor helicopter. Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 2009
- 29. Quintero S.A.P., Collins G.E., Hespanha J.P.: Flocking with Fixed-Wing UAVs for Distributed Sensing: A Stochastic Optimal Control Approach. Proceedings of the American Control Conference (ACC). 17-19 June 2013, Washington DC: 2025-2031
- 30. Ray R. J., Cobliegh B. R., Vachon M. J., Clinton St. J.: Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight, NASA/TP-2002-210730, Aug. 2002
- 31. Ray R. J., Cobliegh B. R., Vachon M. J., Clinton St, J. (2003): Flight test techniques used to evaluate performance benefits during formation flight, NASA/TP-2002- 210730, 2002
- 32. Ren W., Beard R.W.: Virtual structure based spacecraft formation control with formation feedback. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, August 5-8, 2002: AIAA 2002-4963TP
- 33. Reynolds C.W.: Flocks, herds and schools: a distributed behavioral model. Proceedings of ACM SIGGRAPH ’87, ACM SIGGRAPH Computer Graphics. Anaheim, USA, 27-31 July 1987. ACM Press: New York, USA
- 34. Saari H., Aallos V-H., Holmlund Ch., Mäkynen J., Delauré D., Nackaerts K., Michiels B.: Novel hyperspectral imager for lightweight UAVs. Proc. SPIE 7668, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications VII, 766805 (April 24, 2010); DOI:10.1117/12.850091
- 35. Schumacher C.J., Singh S.N.: Nonlinear control of multiple UAVs in close-coupled formation flight. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdfplus/10.2514/6.2000-4373, (DOI: 10.2514/6.2000-4373). 2000: AIAA 2000-4373 TP
- 36. Shao Z., Zhu X., Zhou Z., Wang Y.: A Nonlinear Control of 2-D UAVs Formation Keeping via Virtual Structures. Intelligent Robotics and Applications. Lecture Notes in Computer Science 8917, 2014: 420-431
- 37. Sibilska-Mroziewicz A. M., Ładużyńska-Kozdraś E., Falkowski K., Wolski K., Cedro W., Skalski A.: Experimental measurements of levitation forces generated by hightemperature supeconductors in magnetic fiels. Advances in Intelligent Systems and Computing, 393. Advanced in Mechatronic Systems (Eds. R. Jabłoński, and T. Brzeziński), Springer, ISSN 2194-5357, (DOI: 10.1007/978-3-319-23923-1), 2015: 255 – 260
- 38. Sibilski K., Falkowski K., Wróblewski W., Majka A.: Ground System Specification and Development to Study the GABRIEL Concept; Deliverable D4.4 Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing – GABRIEL, EU project number 284884, July 2014
- 39. Stipanowi´c D.M., Inhalan G., Teo R., Tomlin C.J.: Decentralized overlapping control of formation of unmanned aerial vehicles. Automatica, 2004(40): 1285–1296
- 40. Tokekar P., Hook V., Mulla D., Isler V.: Sensor planning for a symbiotic UAV and UGV system for precision agriculture. Proceedings of the International Conference on Intelligent Robots and Systems, IROS, 2013: 5321–5326
- 41. Turpin M., Michael N., Kumar V.: Decentralized formation control with variable shapes for aerial robots. Proceedings of the IEEE International Conference on Robotics and Automation: 2012: 23–30
- 42. Vachon M. J., Ray R. J., Walsh K. R., Ennix K.: F/A-18 Performance Benefits Measured During Autonomous Formation Flight Project, NASA/TM-2003-210734, Sept. 2003
- 43. Vásárhelyi G., Virágh Cs, Somorjai G., Tarcai N., Szörényi-Nepusz T.T., Vicsek T.: Outdoor flocking and formation flight with autonomous aerial robots. Proceeding of the IEEE International Conference on Intelligent Robots and Systems (IROS 2014), IEEE/RSJ International Conference., Chicago IL, 14-18 September 2014: 3866–3873
- 44. Wan S., Campa G., Napolitano M.T., Seanor B., Yu Gu.: Design of formation control laws for research aircraft models. AIAA Meeting Papers Online. http://arc.aiaa.org/doi/pdf/10.2514/6.2003-5730. 2003: AIAA 2003-5730 TP
- 45. Weimerskirch J.M., Clerquin P.Y., Joraskova A.S.: Energy saving in flight formation. Nature 413(6857), 2001: 697–698
- 46. Williamson W.R., Abdel-Hafez M.F., Rhee I., Song E.J., Wolfe J.D., Chichka J.D., Speyer J.L.: An instrumentation system applied to formation flight. IEEE Transaction Control Systems Technol. 15(1), 2007: 75–85
- 47. Xingping Ch., Serrani A., Ozbay H.: Control of leader-follower formations of terrestrial UAVs Proceedings. 42nd IEEE Conference on Decision and Control, 9-12 December 2003: 498-503
- 48. Yu B.C., Dong X., Shi Z.Y., Zhong Y.S.: Formation control for quadrotor swarm system: algorithms and experiments. Proceedings of the 32nd Chinese Control Conference, 2013: 7099–7104
- 49. Yun B., Chen B.M.K., Lum K.Y., Lee T.H., A leader-follower formation flight control scheme for UAV helicopters. IEEE International Conference on Automation and Logistics, 1-3 September 2008: 39-44
- 50. Zhou G., Li C., Penggen C.: Unmanned aerial vehicle (UAV) real-time video registration for forest fire monitoring. Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS’05, 2005:1803–1806
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-950ae33a-5cfa-49d6-b353-45454070e99b