PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter sensitivity and uncertainty of radiation interception models for intercropping system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimating the interception of radiation is the first and crucial step for the prediction of production for intercropping systems. Determining the relative importance of radiation interception models to the specific outputs could assist in developing suitable model structures, which fit to the theory of light interception and promote model improvements. Assuming an intercropping system with a taller and a shorter crop, a variance-based global sensitivity analysis (EFAST) was applied to three radiation interception models (M1, M2 and M3). The sensitivity indices including main (Si) and total effects (STi) of the fraction of intercepted radiation by the taller (ftaller), the shorter (fshorter) and both intercrops together (fall) were quantified with different perturbations of the geometric arrangement of the crops (10-60 %). We found both ftaller and fshorter in M1 are most sensitive to the leaf area index of the taller crop (LAItaller). In M2, based on the main effects, the leaf area index of the shorter crop (LAIshorter) replaces LAItaller and becomes the most sensitive parameter for fshorter when the perturbations of widths of taller and shorter crops (Wtaller and Wshorter) become 40 % and larger. Furthermore, in M3, ftaller is most sensitive to LAItaller while fshorter is most sensitive to LAIshorter before the perturbations of geometry parameters becoming larger than 50 %. Meanwhile, LAItaller, LAIshorter, and Ktaller are the three most sensitive parameters for fall in all three models. From the results we conclude that M3 is the most plausible radiation interception model among the three models.
Rocznik
Strony
437--456
Opis fizyczny
Bibliogr. 38 poz., rys., wykr., tab.
Twórcy
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +86 02768772215
  • State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +86 02768772215
  • Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, D-53115 Bonn, Germany
  • Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, D-53115 Bonn, Germany
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, phone +86 02768772215
Bibliografia
  • [1] Mead R, Willey RW. The concept of a ‘Land Equivalent Ratio’ and advantages in yields from intercropping. Experimental Agricult. 2008;16(3):217-28. DOI: 10.1017/S0014479700010978.
  • [2] Keating BA, Carberry PS. Resource capture and use in intercropping: solar radiation. Field Crops Res. 1993;34(3):273-301. DOI: 10.1016/0378-4290(93)90118-7.
  • [3] Liu X, Rahman T, Song C, Su B, Yang F, Yong T, et al. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017;200:38-46. DOI: 10.1016/j.fcr.2016.10.003.
  • [4] Zhang L, van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz JHJ. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res. 2008;107(1):29-42. DOI: 10.1016/j.fcr.2007.12.014.
  • [5] Coll L, Cerrudo A, Rizzalli, R, Monzon JP, Andrade FH. Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Res. 2012;134:105-13. DOI: 10.1016/j.fcr.2012.05.005.
  • [6] Zhou Z, Plauborg F, Kristensen K, Andersen MN. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agricult Forest Meteorology. 2017;232:595-605. DOI: 10.1016/j.agrformet.2016.10.017.
  • [7] Kawasaki Y, Tanaka Y, Katsura K, Purcell LC, Shiraiwa T. Yield and dry matter productivity of Japanese and US soybean cultivars. Plant Production Sci. 2016;19(2):257-66. DOI: 10.1080/1343943X.2015.1133235.
  • [8] Sieling K, Böttcher U, Kage H. Dry matter partitioning and canopy traits in wheat and barley under varying N supply. Europ J Agron. 2016;74:1-8. DOI: 10.1016/j.eja.2015.11.022.
  • [9] Sadras VO, Villalobos FJ, Fereres E. Radiation Interception, Radiation Use Efficiency and Crop Productivity. In: Principles of Agronomy for Sustainable Agriculture. 2016;169-88. DOI: 10.1007/978-3-319-46116-8_13.
  • [10] Haverkort AJ, Bicamumpaka M. Correlation between intercepted radiation and yield of potato crops infested by Phytophthora infestans in Central Africa. Netherlands J Plant Pathol. 1986;92(5):239-47. DOI: 10.1007/bf01977690.
  • [11] Gou F, van Ittersum MK, Simon E, Leffelaar PA, van der Putten PEL, Zhang L, et al. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Europ J Agron. 2017;84:125-39. DOI: 10.1016/j.eja.2016.10.014.
  • [12] Sinoquet H, Bonhomme R. Modeling radiative transfer in mixed and row intercropping systems. Agricult Forest Meteorol. 1992;62(3):219-40. DOI: 10.1016/0168-1923(92)90016-W.
  • [13] Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy. Agricult Forest Meteorology. 2002;110(3):203-15. DOI: 10.1016/S0168-1923(01)00287-8.
  • [14] Wang Z, Wu P, Zhao X, Gao Y, Chen X. Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China. Agricult Water Manage. 2015;161:77-85. DOI: 10.1016/j.agwat.2015.07.012.
  • [15] Wang Z, Zhao X, Wu P, He J, Chen X, Gao Y, et al. Radiation interception and utilization by wheat/maize strip intercropping systems. Agricult Forest Meteorology. 2015;204:58-66. DOI: 10.1016/j.agrformet.2015.02.004.
  • [16] Gijzen H, Goudriaan J. A flexible and explanatory model of light distribution and photosynthesis in row crops. Agricult Forest Meteorology. 1989;48(1):1-20. DOI: 10.1016/0168-1923(89)90004-X.
  • [17] Varella H, Guérif M, Buis S. Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environ Modelling Software. 2010;25(3):310-9. DOI: 10.1016/j.envsoft.2009.09.012.
  • [18] Gao L, Bryan BA, Nolan M, Connor JD, Song X, Zhao G. Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environ Modelling Software. 2016;76:154-66. DOI: 10.1016/j.envsoft.2015.11.001.
  • [19] Iooss B, Lemaître P. A Review on Global Sensitivity Analysis Methods. Uncertainty Management in Simulation-Optimization of Complex Systems. 2015;101-22. DOI: 10.1007/978-1-4899-7547-8_5.
  • [20] Lei G, Zeng W, Zhu J, Zha Y, Fang Y, Song Y, et al. Quantification of leaf growth, height increase, and compensatory root water uptake of sunflower in heterogeneous saline soils. Agronomy J. 2019;111(3):1-18. DOI: 10.2134/agronj2018.06.0418.
  • [21] Zeng W, Lei G, Zha Y, Fang Y, Wu J, Huang J. Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop Pasture Sci. 2018;69:163-73. DOI: 10.1071/CP17020.
  • [22] Zhao G, Bryan BA, Song X. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol Modelling. 2014;279:1-11. DOI: 10.1016/j.ecolmodel.2014.02.003.
  • [23] Brutsaert W. Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Boundary-Layer Meteorology. 1979;16(4):365-88. DOI: 10.1007/bf02220492.
  • [24] Pronk AA, Goudriaan J, Stilma E, Challa H. A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar. NJAS - Wageningen J Life Sci. 2003;51(3):279-95. DOI: 10.1016/S1573-5214(03)80020-9.
  • [25] Sobol IM. On sensitivity estimation for nonlinear mathematical models. Keldysh Appl Math Institute. 1990;2(1):112-8. DOI: 10.18287/0134-2452-2015-39-4-459-461.
  • [26] Wang F, Mladenoff DJ, Forrester JA, Keough C, Parton WJ. Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy. Ecol Modelling. 2013;259:16-23. DOI: 10.1016/j.ecolmodel.2013.03.008.
  • [27] González-Amaro RM, Martínez-Bernal A, Basurto-Peña F, Vibrans H. Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico. J Ethnobiol Ethnomedicine. 2009;5(1):38. DOI: 10.1186/1746-4269-5-38.
  • [28] Shi R, Zhang H, Sun J, Wei G, Zhuang D, Zheng N. Responses of plant biochemical substances to reflectance spectra at leaf and canopy scales. Proc SPIE - Int Soc Optical Eng. 2008;7083. DOI: 10.1117/12.794088.
  • [29] Sellier JM, Georgieva R, Dimov I. Sensitivity analysis of design parameters for silicon diodes. Numerical Methods Applications. 2014;34-43. DOI: 10.1007/978-3-319-15585-2_4
  • [30] Gou F, van Ittersum MK, van der Werf W. Simulating potential growth in a relay-strip intercropping system: Model description, calibration and testing. Field Crops Res. 2017;200:122-42. DOI: 10.1016/j.fcr.2016.09.015.
  • [31] Liu X, Rahman T, Yang F, Song C, Yong T, Liu J, et al. PAR interception and utilization in different maize and soybean intercropping patterns. PLOS ONE 2017;12(1):e0169218. DOI: 10.1371/journal.pone.0169218.
  • [32] Gou F, van Ittersum MK, Wang G, van der Putten PEL, van der Werf W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Europ J Agron. 2016;76:17-27. DOI: 10.1016/j.eja.2016.01.005.
  • [33] Wu J, Ding Y, Wang G, Shen Y, Yusuke Y, Jumpei K. Energy balance of irrigated intercropping field in the middle reaches of Heihe River basin. Chin Geograph Sci. 2006;16(3):243-8. DOI: 10.1007/s11769-006-0243-7.
  • [34] Nassiri Mahallati M, Koocheki A, Mondani F, Feizi H, Amirmoradi S. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. J Cleaner Prod. 2015;106:343-50. DOI: 10.1016/j.jclepro.2014.10.099.
  • [35] Munz S, Graeff-Hönninger S, Lizaso JI, Chen Q, Claupein W. Modeling light availability for a subordinate crop within a strip-intercropping system. Field Crops Res. 2014;155:77-89. DOI: 10.1016/j.fcr.2013.09.020.
  • [36] Mao L, Zhang L, Evers JB, Henke M, van der Werf W, Liu S, et al. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Field Crops Res. 2016;187:1-11. DOI: 10.1016/j.fcr.2015.12.005.
  • [37] Tang L, Hou C, Huang H, Chen C, Zou J, Lin D. Light interception efficiency analysis based on three-dimensional peach canopy models. Ecol Informatics. 2015;30:60-7. DOI: 10.1016/j.ecoinf.2015.09.012.
  • [38] Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017;203:16-23. DOI: 10.1016/j.fcr.2016.12.007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94f0fdf6-6488-4773-a88c-b9b68fa56344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.