PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zmiany zlodzenia Morza Karskiego w latach 1979-2015. Podejście systemowe

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Changes of sea ice extent on the Kara Sea in the years 1979-2015. System approach
Języki publikacji
PL
Abstrakty
PL
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
EN
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
Rocznik
Tom
Strony
109--156
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
  • Katedra Urbanistyki i Planowania Regionalnego, Politechnika Gdańska ul. Narutowicza 11/12 80-233 Gdańsk
autor
  • Stowarzyszenie Klimatologów Polskich
Bibliografia
  • 1. Alekseev G.V., Kuzmina S.I., Nagurny A.P., Ivanov N.E., 2008. Arctic Sea Ice Data Sets in the Context of Climate Change During the 20th Century. [w:] S. Brönnimann J., Luterbacher T., Ewen H.F., Diaz R.S., Stolarski U., (red.), Neu: Climate Variability and Extremes during the Past 100 Years. doi: 10.1007/978-1-4020-6766-2. Springer: 47-63.
  • 2. Beszczynska-Möller A., Woodgate R.A., Lee C., Melling H., Karcher M., 2011. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24(3): 82-99, http://dx.doi.org/10.5670/ oceanog.2011.59.
  • 3. Bitz C.M., , Gent P.R., Woodgate R.A., Holland M.M., Lindsay R., 2006. The Influence of Sea Ice on Ocean Heat Uptake in Response to Increasing CO2. Journal of Climate 19 (11); 2437-2450. doi: http://dx.doi.org/ 10.1175/JCLI3756.1.
  • 4. Blinov N.I., Artem’ev A.O., Popkov S.N., 1989. Ocenka potokov tepla iż vody v atmosferu v Arkticheskom bassejne. Trudy AANII, 417: 122-127.
  • 5. Boitsov V.D., Karsakov A.L., Trofimov A.G., 2012. Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES Journal of Marine Science, 69 (5); 833-840. doi:10. 1093/icesjms/fss075.
  • 6. Borodachev V.E., Gudkovich Z.M., Klyachkin S.V., Smolyanitsky V.M., 2000. Fast ice conditions in the Kara Sea and possible reasons of interannual changes of fast ice area. [w:] Transport and fate of contaminants in the northern seas. AARI final report. Tromsø, Norway: Norwegian Polar Institute: 1-14.
  • 7. Broecker W., 1991. The great ocean conveyor. Oceanography, 4 (2): 79-89.
  • 8. Chylek P., Folland C.K., Lesins G., Dubey M.K., Wang M., 2009. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 36, L14801, doi:10.1029/2009GL038777.
  • 9. Curry J.A., Rossow W.B., Randall D., Schramm J.L., 1996. Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9 (8): 1731-1763.
  • 10. Cuzzone J., Vavrus S., 2011. The relationships between Arctic sea ice and cloud-related variables in the ERA-Interim reanalysis and CCSM3. Environmental Research Letters, 6, 014016, doi:10.1088/ 1748-9326/6/1/014016.
  • 11. Danilov A.I., Mironov E.U., Spichkin V.A. (ed), 2004. Izmenchivost’ prirodnykh uslovij v shelfovoj zone Barencova i Karskogo Morej. Wyd. AANII, Sankt-Peterburg: 431 s.
  • 12. Dmitrenko I. A., Kirillov S.A., Serra N., Koldunov N.V., Ivanov V.V., Schauer U., Polyakov I.V., Barber D., Janout M., Lien V.S., Makhotin M., Aksenov Y., 2014. Heat loss from the Atlantic water layer in the northern Kara Sea: causes and consequences. Ocean Sciences, 10: 719-730, doi:10.5194/os-10-719-2014.
  • 13. Dmitrenko I.A., Polyakov I.V., Kirillov S.A., Timokhov L.A., Frolov I.E., Sokolov V.T., Simmons H.L., Ivanov V.V., Walsh D., 2008. Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic Water warm anomaly along the Eurasian Basin margins. Journal of Geophysical Research, 113, C05023, doi:10.1029/ 2007JC004158
  • 14. Divine D., Korsnes R., Makshtas A., 2003. Variability and climate sensitivity of fast ice extent in the north-eastern Kara Sea. Polar Research, 22 (1): 27-34.
  • 15. Divine D.V., Korsnes R., Makshtas A.P., Godtliebsen F., Svendsen H., 2005. Atmospheric-driven state transfer of shore-fast ice in the northeastern Kara Sea. Journal of Geophysical Research, 110, C09013, doi:10.1029/ 2004JC002706.
  • 16. Doronin Yu.P., Khejsin D.E., 1975. Morskoj led. Gidrometeoizdat, Leningrad: 318 s.
  • 17. Enfield D.B., Mestas-Nunez A.M., Trimble P.J., 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28 (10): 2077-2080, 2000GL012745.
  • 18. Frolov I.E., Gudkovich Z.M., Karklin V.P., Kovalev E.G., Smolyanitsky V.M., 2009. Climate change in Eurasian Arctic Shelf seas. Centennial ice cover observations. Springer-Praxis Publishing, Chichester: 164 s.
  • 19. Gray S.T., Graumlich L.J., Betancourt J.L., Pederson G.T., 2004. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31, L12205, doi:10.1029/2004 GL019932.
  • 20. Gopchenko E.D., Loboda I.S., Yagotinceva T.V., 1995. Raschet kharaktieristyk godovogo stoka rek Pouostrova Yamal. Problemy Arktiki i Antarktiki, 69: 108-115.
  • 21. Holland M.M., Bitz C.M, Hunke E.C., Lipscomb W.H., Schramm J.L., 2006. Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3. Journal of Climate, 19 (11): 2398-2414. doi: http://dx.doi.org/ 10.1175/JCLI3751.1.
  • 22. Huang B., Banzon V.F., Freeman E., Lawrimore J., Liu W., Peterson T.C., Smith T.M., Thorne P.W., Woodruff S.D., Zhang H-M., 2015. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: Upgrades and Intercomparisons. Journal of Climate, 28 (3): 911-930. doi: http://dx.doi.org/10.1175/JCLI-D14-00006.1.
  • 23. Hurrell J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269: 676-679.
  • 24. Ivanov V.V., Alexeev V.A., Repina I, Koldunov N.V., Smirnov A., 2012. Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard. Advances in Meteorology 2012, Article ID 201818, http://dx.doi.org/ 10.1155/2012/201818.
  • 25. Janout M.A., Holemann J., Krumpen T., 2013. Cross-shelf transport of warm and saline water in response to sea ice drift on the Laptev Sea shelf. Journal of Geophysical Research. Oceans, 118: 563-576, doi:10.1029/ 2011JC007731.
  • 26. Jones P.D., Jónsson T., Wheeler D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of Climatology, 17 (13): 1433-1450.
  • 27. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J. , Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77 (3): 437-471.
  • 28. Kuhlbrodt T., Griesel A., Montoya M., Levermann A., Hofmann M., Rahmstorf S., 2007. On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics, 45, RG2001, doi:10.1029/2004 RG000166.
  • 29. Kwok R., 2000. Recent Changes in Arctic Ocean Sea Ice Motion Associated with the North Atlantic Oscillation. Geophysical Reearch Letters, 27 (6): 775-778. doi: 10.1029/1999GL002382.
  • 30. Kwok R., 2009. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979-2007. Journal of Climate 22 (9): 2438-2457, http://dx.doi.org/10.1175/2008JCLI2819.1.
  • 31. Liu W., Huang B., Peter W.P.W., Banzon V.F., Zhang H-M., Freeman E., Lawrimore J., Peterson T.C., Smith T.M., Woodruff S.D., 2015. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4): Part II. Parametric and Structural Uncertainty Estimations. Journal of Climate, 28 (3): 931-951. doi: http://dx.doi.org/ 10.1175/JCLI-D-14-00007.1
  • 32. Liu Y., Key J.R., Wang X., 2007. The Influence of Changes in Cloud Cover on Recent Surface Temperature Trends in the Arctic. Journal of Climate, 21 (4): 705-715. doi: 10.1175/2007JCLI1681.1.
  • 33. Makhotin M.S., Bloshkina E.V., Ivanov V.V., Balakin A.A., Ashik I.M., Sokolov V.T., 2014. Osobennosti rasprostranieniya atlanticheskoj vodnoj massy v severo-vostochnoj chasti Barencovo morya. [w:] Ryabchenko S.V. (red.), Sbornik tezisov Vserossijskoj konferencii s mejdunarodnom uchastiem "Sostoyanie arkticheskikh moryej i territorij v usloviyakh imenieniya klimata", Severnyj (Arkitcheskij) Federalnyj Universitet im. M.V. Lomonosova, Arkhangielsk: 91-91.
  • 34. Marchenko N.A., 2012. Russian Arctic Seas. Navigational conditions and accidents. Springer-Verlag Berlin Heidelberg: 274 s.
  • 35. Marsz A.A., 2015. Model zmian powierzchni lodów morskich Arktyki (1979-2013) – zmienne sterujące modelu „minimalistycznym” i ich wymowa klimatyczna. Problemy Klimatologii Polarnej, 25: 249-334.
  • 36. Marsz A.A., Styszyńska A., 2009. Oceanic control of the warming processes in the Arctic – a different point of view for the reasons of changes in the Arctic climate. Problemy Klimatologii Polarnej, 19: 7-31.
  • 37. Marsz A., Styszyńska A., 2012. Temperatura wód atlantyckich na głębokości 200 m w Prądzie Zachodniospitsbergeńskim (76.5°N, 9-12°E), a temperatura powierzchni morza w tym rejonie (1996-2011). Problemy Klimatologii Polarnej, 22: 43-56.
  • 38. Marsz A., Styszyńska A., 2013. The principal climatic parameters. [w:] Marsz A.A., Styszyńska A. (red), Climate and Climate Change at Hornsund, Svalbard. Publishing House of Gdynia Maritime Academy, Gdynia: 21-55.
  • 39. Mironov E.U., 2010 (red). Opasnye ledovye yavleniya dlya sudokhodstva v Arktike. Wyd. AANII, Sant-Peterburg: 319 s.
  • 40. Mork K.A., Skagseth Ø., 2010. A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography. Ocean Science, 6: 901-911, http://dx.doi. org/10.5194/os-6-901-2010.
  • 41. Ogi M., Yamazaki K., 2010. Trends in the Summer Northern Annular Mode and Arctic Sea Ice. SOLA, 6: 041-044, doi:10.2151/sola.2010-011.
  • 42. Orvik K.A., Skagseth Ø., 2005. Heat flux variations in the eastern Norwegian Atlantic Current toward the Arctic from moored instruments, 1995-2005. Geophysical Research Letters 32, L14610, http://dx.doi.org/10.1029/ 2005GL023487.
  • 43. Østerhus S., Turrell W.R., Jónsson S., Hansen B., 2005. Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophysical Research Letters 32, L07603, http://dx.doi.org/10.1029/2004GL022188.
  • 44. Polyakov I.V., Alekseev G.V., Bekryaev R.V., Bhatt U.S., Colony R., Johnson M.A., Karklin V.P., Walsh D., Yulin A.V., 2003. Long-term ice variability in Arctic marginal seas. Journal of Climate, 16 (12): 2078-2085.
  • 45. Polyakov I.V., Alekseev G.V., Timokhov L.A., Bhatt U.S., Colony R.L., Simmons H.L., Walsh D., Walsh J.E., Zakharov V.F., 2004. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. Journal of Climate, 17 (23): 4485-4497.
  • 46. Polyakov I.V., Alexeev A.V., Ashik I.M., Bacon S., Beszczyńska-Moller A., Carmack E.C. Dmitrenko I.A., Fortier L., Gascard J-C., Hansen E., Holemann J., Ivanov V.V., Kikuchi T., Kirillov S., Lenn Y-D., McLaughlin F.A., Piechura J., Repina I., Timokhov L.A., Walczowski W., Woodgate R., 2011. Fate of Early 2000s Arctic Warm Water Pulse. BAMS, 92 (5); 561-566. doi:10.1175/2010BAMS2921.1.
  • 47. Polyakov I.V., Alexeev V.A., Belchansky G.I, Dmitrenko I.A., Ivanov V.V., Kirillov S.A., Korablev A.A., Steele M., Timokhov L.A., Yashayaev I., 2008. Arctic Ocean freshwater changes over the past 100 years and their causes. Journal of Climate, 21 (2): 364-384, http://dx.doi.org/10.1175/2007JCLI1748.1.
  • 48. Polyakov I.V., Alexeev A.V., Bhatt U.S., Polyakova E.I., Zhang X., 2010. North Atlantic warming: patterns of longterm trend and multidecadal variability. Climate Dynamics, 34 (2): 439-457. DOI 10.1007/s00382-008-0522-3.
  • 49. Polyakov I.V., Bekryaev R.V., Alekseev G.V., Bhatt U.S., Colony R.L., Johnson M.A., Maskshtas A.P., Walsh D., 2003. Variability and Trends of Air Temperature and Pressure in the Maritime Arctic, 1875-2000. Journal of Climate, 16 (12): 2067-2077.
  • 50. Polyakov I.V., Beszczynska A., Carmack E.C., Dmitrenko I.A., Fahrbach E., Frolov I.E., Gerdes R., Hansen R., Holfort J., Ivanov V.V., Mark A. Johnson, Karcher M., Kauker F., Morison J., Orvik K.A., Schauer U., Simmons H.L., Skagseth Ø., Sokolov V.T., Steele M., Timokhov L.A., Walsh D., Walsh J.E., 2005. One more step toward a warmer Arctic. Geophysical Research Letters 32, L17605, http://dx.doi.org/10.1029/2005GL023740.
  • 51. Polyakov I., Walsh D., Dmitrenko I., Colony R.L., Timokhov L.A., 2003. Arctic Ocean variability derived from historical observations. Geophysical Research Letters, 30 (6): 1298; doi: 10.1029/2002GL016441.
  • 52. Polyakov I.V., Walsh J.E., Kwok, R., 2012. Recent changes of arctic multiyear sea ice coverage and the likely causes. BAMS (Bulletin of the American Meteorological Society), 93 (2):145-151. doi:10.1175/BAMS-D-1100070.1.
  • 53. Rigor I.G., Wallace J.M., 2004. Variations in the age of sea ice and summer sea ice extent. Geophysical Research Letters, 31, doi:10.1029 /2004GL019492.
  • 54. Rigor I.G., Wallace J,M, Colony R.L., 2002. Response of sea ice to the Arctic oscillation. Journal of Climate, 15 (18): 2648-2668.
  • 55. Schauer U., Beszczynska-Möller A., Walczowski W., Fahrbach E., Piechura J., Hansen E., 2008. Variation of measured heat flow through the Fram Strait between 1997 and 2006. [w:] ed. R.R. Dickson, J. Meincke, P. Rhines; Arctic-Subarctic Ocean Fluxes. Springer, Dordrecht: 65-85.
  • 56. Schlesinger M.E., Ramankutty N. 1994. An oscillation in the global climate system of period 65-70 years. Nature, 367 (6465): 723-726. Schmittner A., Chiang J.C.H, Hemming S.R., 2007. Introduction: The Ocean’s Meridional Overturning Circulation. [w:] Ocean Circulation: Mechanisms and Impacts – Past and Future Changes of Meridional Overturning. AGU Geophysical Monograph Series 173: 1-4.
  • 57. Schweiger A.J., 2004. Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophysical Research Letters, 31: L2207. doi:10.1029/2004GL020067.
  • 58. Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W., 2010. The Impact of North Atlantic-Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. Journal of Climate, 23 (21): 5668-5677. doi: 10.1175/2010JCLI3347.1.
  • 59. Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N., Holland M.M., 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3: 11-19. www.the-cryosphere.net/3/11/2009/.
  • 60. Serreze M.C., Francis J.A., 2006. The Arctic Amplification Debate. Climatic Change, 76 (3): 241-264. doi: 10.1007/ s10584-005-9017-y.
  • 61. Skagseth Ø., Furevik T., Ingvaldsen R., Loeng H., Mork K.A., Orvik K.A., Ozhigin V., 2008. Volume and heat transports to the Arctic Ocean via the Norwegian and Barents seas. [w:] ed. R.R. Dickson, J. Meincke, P. Rhines, Arctic-Subarctic Ocean Fluxes. Springer, Dordrecht: 45-64.
  • 62. Smith T.M., Reynolds R.W., Peterson T.C., Lawrimore J., 2008. Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). Journal of Climate, 21 (10): 2283-2296.
  • 63. Srokosz M.A., Bryden H.L., 2015. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science, 348 (6241), doi: 10.1126/science.1255575.
  • 64. Stiepanov S.I., 1972. Prostranstvenno-vremennaya izmenchivost perenosa vody, tepla i solej v Karskom More v naviacionnyj period. Trudy AANII, 306: 181-187.
  • 65. Stroeve J., Frei A., McCreight J., Ghatak D., 2008. Arctic sea-ice variability revisited. Annals of Glaciology, 48: 71-81.
  • 66. Stroeve J., Maslowski W., 2008. Arctic Sea Ice Variability During the Last Half Century. [w:] ed. S. Brönnimann, J. Luterbacher, T. Ewen, H.F. Diaz, R.S. Stolarski, U. Neu, Climate Variability and Extremes during the Past 100 Years. Springer: 143-154.
  • 67. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Maslanik J., Barrett A.P., 2012. The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110: 1005-1027. doi 10.1007/s10584-011-0101-1.
  • 68. Styszyńska A., 2005. Przyczyny i mechanizmy współczesnego (1982-2002) ocieplenia atlantyckiej Arktyki. Wyd. Uczelniane AM, Gdynia: 109 s.
  • 69. Vavrus S., Holland M.M., Bailey D.A., 2011. Changes in Arctic clouds during intervals of rapid sea ice loss. Climate Dynamics. 36; 1475-1489. doi:10.1007/s00382-010-0816-0.
  • 70. Volkov V.A., Johannessen O.M., Borodachev V.E., Voinov G.N., Pettersson L.H., Bobylev L.P, Kouraev A.V., 2002. Polar Seas Oceanography: An integrated case study of the Kara Sea. Springer – Praxis Publishing, Chichester UK: 451 s.
  • 71. Vorobiev V.N., Gudkovich Z.M., 1976. O vnutrigodovoj izmenchivosti v drejfe l’dov i pripoverkhnostnykh techenij Arkticheskogo basejna. Trudy AANII, 319: 23-38.
  • 72. Walczowski W., 2013. Frontal structures in the West Spitsbergen Current margins. Ocean Sciences, 9: 957-975, www.ocean-sci.net/9/957/2013/. doi:10.5194/os-9-957-2013.
  • 73. Walczowski W., Piechura J., 2006. New evidence of warming propagating toward the Arctic Ocean. Geophysical Research Letters, 33, L12601. doi:10.1029/2006GL025872.
  • 74. Walczowski W., Piechura J., 2007. Pathways of the Greenland Sea warming. Geophysical Research Letters, 34, L10608. doi:10.1029/2007GL029974.
  • 75. Wang J., Ikeda M., 2000. Arctic oscillation and Arctic sea-ice oscillation. Geophysical Research Letters, 27 (9): 1287-1290. doi: 10.1029/1999GL002389.
  • 76. Woodgate R. A., Aagaard K., 2005. Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophysical Research Letters, 32, L24603, doi:10.1029/2004GL021747.
  • 77. Yanes A.V., 1995. Vozmozhnost’ dolgosrochnogo prognozirovaniya okeanologicheskikh uslovij s ychetom dalnykh svyazej. Problemy Arktiki i Antarktiki, 69: 129-133.
  • 78. Zakharov V.F., 1981. L’dy Arktiki i sovremennye prirodnye processy. Gidrometeoizdat, Leningrad: 136 s.
  • 79. Zakharov V.F., 1997. Sea ice in the climate system. Arctic Climate System Studies, Geneva, WMO/TD-No. 782. 81 s.
  • 80. Zakharov V.F., Malinin V.N., 2000. Morskie l’dy i klimat. Gidrometeoizdat, Sankt Peterburg: 92 s.
  • 81. Zhang J., Thomas D., Rothrock D.A., Lindsay R., Yu Y., Kwok R., 2003. Assimilation of ice motion observations and comparisons with submarine ice thickness data. Journal of Geophysical Research, 108 (C6); 3170, doi:10.1029/2001JC001041.
  • 82. Zhang R., 2015. Mechanisms for low-frequency variability of summer Arctic sea ice extent. PNAS, 112 (15): 4570-4575.
  • 83. Zhang R., Delworth T.L., Held I.M., 2007. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters, 34, L02709, doi:10.1029/2006 GL028683.
  • 84. Zubakin G.K. (red.), 2006. Ledjanye obrazovanija morej zapadnoj Arktiki. GNCRF AANII, Sankt-Peterburg: 272 s.
  • 85. Zubov N.N., 1945. L’dy Arktyki. Glavsevmorput, Moskva: 360 s.
  • 86. Zubov N.N., 1956. O l’dakh Arktiki i Antarktiki. Dopolneniya k knige „L’dy Arktiki” (na pravakh rukopisii). MGU, Geograficheskij Fakultet. Moskva: 117 s.
  • 87. Zygmuntowska M., Mauritsen T., Quaas J., Kaleschke L., 2012. Arctic Clouds and Surface Radiation – a critical comparison of satellite retrievals and the ERA-Interim reanalysis. Atmospheric Chemistry and Physics, 12: 6667-6677, doi:10.5194/acp-12-6667-2012.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-93f52830-e006-4eee-9aa8-00690dd8b701
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.