Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Diabetes mellitus (DM) is a multifactorial disease characterized by hyperglycemia. The type 1 and type 2 DM are two different conditions with insulin deficiency and insulin resistance, respectively. It may cause atherosclerosis, stroke, myocardial infarction and other relevant complications. It also features neurological degeneration with autonomic dysfunction to meet metabolic demand. The autonomic balance controls the physiological variables that exhibit nonlinear dynamics. Thus, in current work, nonlinear heart rate variability (HRV) parameters in prognosis of diabetes using artificial neural network (ANN) and support vector machine (SVM) have been demonstrated. The digital lead-I electrocardiogram (ECG) was recorded from male Wister rats of 10–12 week of age and 200 ± 20 gm of weight from control (n = 5) as well as from Streptozotocin induced diabetic rats (n = 5). A total of 526 datasets were computed from the recorded ECG data for evaluating thirteen nonlinear HRV parameters and used for training and testing of ANN. Using these parameters as inputs, the classification accuracy of 86.3% was obtained with an ANN architecture (13:7:1) at learning rate of 0.01. While relatively better accuracy of 90.5% was observed with SVM to differentiate the diabetic and control subjects. The obtained results suggested that nonlinear HRV parameters show distinct changes due to diabetes and hence along with machine learning tools, these can be used for development of noninvasive low-cost real-time prognostic system in predicting diabetes using machine learning techniques.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1002--1009
Opis fizyczny
Bibliogr. 65 poz., tab.
Twórcy
autor
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
autor
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
autor
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
autor
- Department of Mathematics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
autor
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
Bibliografia
- [1] Saotome M, Ikoma T, Hasan P, Maekawa Y. Cardiac insulin resistance in heart failure: the role of mitochondrial dynamics. Int J Mol Sci 2019;20:3552.
- [2] Bekkink MO, Koeneman M, de Galan BE, Bredie SJ. Early detection of hypoglycemia in type 1 diabetes using heart rate variability measured by a wearable device. Diabetes Care 2019;42(4):689–92.
- [3] Mitchell S, Malanda B, Damasceno A, Eckel RH, Gaita D, Kotseva K, et al. A roadmap on the prevention of cardiovascular disease among people living with diabetes. Global Heart 2019;14(3):215.
- [4] Bizino MB, Jazet IM, Westenberg JJ, van Eyk HJ, Paiman EH, Smit JW, et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo- controlled trial. Cardiovasc Diabetol 2019;18:55.
- [5] Williams SM, Eleftheriadou A, Alam U, Cuthbertson DJ, Wilding JP. Cardiac autonomic neuropathy in obesity, the metabolic syndrome and prediabetes: a narrative review. Diabetes Therapy 2019;1:1–27.
- [6] Sardu C, De Lucia C, Wallner M, Santulli G. Diabetes mellitus and its cardiovascular complications: new insights into an old disease. J Diabetes Res 2019. Article ID 1905194.
- [7] Maji U, Mitra M, Pal S. Characterization of cardiac arrhythmias by variational mode decomposition technique. Biocybern Biomed Eng 2017;37:578–89.
- [8] Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of cardiology (ESC) and the European association for the study of diabetes (EASD). Eur Heart J 2020;41:255–323.
- [9] Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, et al. Type 2 diabetes mellitus and heart failure: a scientific statement from the american heart association and the heart failure society of america: this statement does not represent an update of the 2017 ACC/AHA HFSA heart failure guideline update. Circulation 2019;140: e294–324.
- [10] Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J 2019;43:0–3.
- [11] Prasad VC, Savery DM, Prasad VR. Cardiac autonomic dysfunction and ECG abnormalities in patients with type 2 diabetes mellitus-a comparative cross-sectional study. Natl J Physiol Pharm Pharmacol 2016;6:178–81.
- [12] Schroeder EB, Chambless LE, Liao D, Prineas RJ, Evans GW, Rosamond WD, et al. Diabetes, glucose, insulin, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care 2005;28:668–74.
- [13] Chessa M, Butera G, Lanza GA, Bossone E, Delogu A, De Rosa G, et al. Role of heart rate variability in the early diagnosis of diabetic autonomic neuropathy in children. Herz 2002;27:785–90.
- [14] Marfella R, Sardu C, Balestrieri ML, Siniscalchi M, Minicucci F, Signoriello G, et al. Effects of incretin treatment on cardiovascular outcomes in diabetic STEMI-patients with culprit obstructive and multivessel non obstructive- coronary-stenosis. Diabetol Metab Syndr 2018;10:1.
- [15] Marfella R, Sardu C, Calabro P, Siniscalchi M, Minicucci F, Signoriello G, et al. Non-ST-elevation myocardial infarction outcomes in patients with type 2 diabetes with non-obstructive coronary artery stenosis: Effects of incretin treatment. Diabetes Obes Metab 2018;20:723–9.
- [16] Sardu C, Paolisso P, Sacra C, Mauro C, Minicucci F, Portoghese M, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE multicenter prospective study. Diabetes Care 2019;42:1946–55.
- [17] Kittnar O. Electrocardiographic changes in diabetes mellitus. Physiol Res 2015;64:S559.
- [18] Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. J Am Med Assoc 2002;287:2570–81.
- [19] Zellweger M, Pfisterer M. Silent coronary artery disease in patients with diabetes mellitus. Swiss Med Wkly 2001;131:427–32.
- [20] Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, et al. Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis. PLOS ONE 2018;13:e0195166.
- [21] Sardu C, Paolisso P, Santamaria M, Sacra C, Pieretti G, Rizzo MR, et al. Cardiac syncope recurrence in type 2 diabetes mellitus patients vs. normoglycemics patients: The CARVAS study. Diabetes Res Clin Pract 2019;151:152–62.
- [22] Cichosz SL, Frystyk J, Hejlesen OK, Tarnow L, Fleischer J. A novel algorithm for prediction and detection of hypoglycemia based on continuous glucose monitoring and heart rate variability in patients with type 1 diabetes. J Diabetes Sci Technol 2014;8:731–7.
- [23] Zimmermann-Schlegel V, Wild B, Nawroth P, Kopf S, Herzog W, Hartmann M. Impact of depression and psychosocial treatment on heart rate variability in patients with type 2 diabetes mellitus: an exploratory analysis based on the HEIDIS trial. Exp Clin Endocrinol Diabetes 2019;127:367–76.
- [24] Sharma RR, Kumar A, Pachori RB, Acharya UR. Accurate automated detection of congestive heart failure using eigenvalue decomposition-based features extracted from HRV signals. Biocybern Biomed Eng 2019;39:312–27.
- [25] Singh N, Aggarwal Y, Sinha RK. Heart rate variability analysis under varied task difficulties in mental arithmetic performance. Health Technol 2019;9:343–53.
- [26] Shukla RS, Aggarwal Y. Nonlinear Heart Rate Variability based artificial intelligence in lung cancer prediction. J Appl Biomed 2018;16:145–55.
- [27] Shukla RS, Aggarwal Y. Nonlinear heart rate variability-based analysis and prediction of performance status in pulmonary metastases patients. Biomed Eng-App Bas C 2018;30:1850043.
- [28] Aggarwal Y, Singh N, Ghosh S, Sinha RK. Eye gaze–induced mental stress alters the heart rate variability analysis. J Clin Eng 2014;39:79–89.
- [29] Schlenker J, Nedelka T, Riedlbauchoven L, Socha V, Hana K, Kutilek P. Recurrence quantification analysis: a promising method for data evaluation in medicine. Eur J Biomed Inform 2014;10:en35–40.
- [30] Chiang JK, Kuo TB, Fu CH, Koo M. Predicting 7-day survival using heart rate variability in hospice patients with non- lung cancers. J Nat Cancer Inst 2013;11:812–3.
- [31] De Souza ACA, Cisternas JR, De Abreu LC, Roque AL, Monteiro CBM, Adami F, et al. Fractal correlation property of heart rate variability in response to the postural change maneuver in healthy women. Int Arch Med 2014;7:25.
- [32] Roy B, Ghatak S. Nonlinear methods to assess changes in heart rate variability in type 2 diabetic patients. Arq Bras Cardiol 2013;101:317–27.
- [33] Yeh R-G, Chen G-Y, Shieh J-S, Kuo C-D. Parameters investigation of detrended fluctuation analysis for short-term human heart rate variability. J Med Biol Eng 2010;30:277–82.
- [34] Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly 2004;134:514–22.
- [35] Seyd PA, Ahamed VT, Jacob J, Joseph P. Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus. Int J Biol Life Sci 2008;4:24–7.
- [36] Shukla RS, Aggarwal Y. Time-domain heart rate variability- based computer-aided prognosis of lung cancer. Indian J Cancer 2018;55:61–5.
- [37] Meamar M, Dehpour T, Mazloom R, Sharifi F, Raoufy MR, Dehpour AR, et al. The effect of endotoxin on heart rate dynamics in diabetic rats. AutonNeurosci 2015;189:83–6.
- [38] Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput 2006;44:1031–51.
- [39] Mohebbi M, Ghassemian H, Asl BM. Structure of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation. J Med Sig Sens 2011;1:113–21.
- [40] Trivedi GY, Saboo B, Singh RB, Maheshwari A, Sharma K, Verma N. Can decreased heart rate variability be a marker ofautonomic dysfunction, metabolic syndrome and diabetes? J Diabetol 2019;10:48–56.
- [41] Franca da Silva AK, Destro Christofaro DG, Manata Vanzella L, Marques Vanderlei F, Lopez Laurino MJ, Vanderlei M, et al. Relationship of the aggregation of cardiovascular risk factors in the parasympathetic modulation of young people with type 1 diabetes. Medicina 2019;55:534.
- [42] Kim HY, Jung HW, Lee YA, Shin CH, Yang SW. Cardiac autonomic neuropathy in nonobese young adults with type 1 diabetes. Ann Pediatr Endocrinol Metab 2019;24(3):180.
- [43] Albarado-Ibanez A, Arroyo-Carmona RE, Sanchez- Hernández R, Ramos-Ortiz G, Frank A, Garcia-Gudino D, et al. The role of the autonomic nervous system on cardiac rhythm during the evolution of diabetes mellitus using heart rate variability as a biomarker. J Diabetes Res 2019;10. Article ID 5157024.
- [44] Li X, Jiang YH, Jiang P, Lin HQ, Yang JL, Ma DF, et al. Analysis of heart rate variability and cardiac autonomic nerve remodeling in streptozotocin-induced diabetic rats. Exp Clin Endocrinol Diabetes 2015;123:272–81.
- [45] Ribeiro JSI, Pereira R, Valença Neto FP, Freire VI, Casotti AC, Galvao dos Reis M. Relationship between diabetes mellitus and heart rate variability in community-dwelling elders. Medicina 2017;53:375–9.
- [46] Amato F, López A, Peña-Méndez EM, Vanhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed 2013;11:47–58.
- [47] Mosquera-Lopez C, Dodier R, Tyler N, Resalat N, Jacobs P. Leveraging a big dataset to develop a recurrent neural network to predict adverse glycemic events in type 1 diabetes. IEEE J Biomed Health Inform 2019. http://dx.doi.org/10.1109/JBHI.2019.2911701.
- [48] Srivastava S, Sharma L, Sharma V, Kumar A, Darbari H. Prediction of diabetes using artificial neural network approach. Engineering vibration, communication and information processing. Singapore: Springer; 2019. p. 679–87.
- [49] Karegowda AG, Manjunath AS, Jayaram MA. Application of genetic algorithm optimized neural network connection weights for medical diagnosis of pima Indians diabetes. Int J Soft Comput 2011;2:15–23.
- [50] Pappada SM, Cameron BD, Rosman PM. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients. J Diabetes Sci Technol 2008;2:792–801.
- [51] Venkatesan P, Anitha S. Application of a radial basis function neural network for diagnosis of diabetes mellitus. Curr Sci 2006;91:1195–9.
- [52] Kumari VA, Chitra R. Classification of diabetes disease using support vector machine. Int J Eng Res Appl 2013;3:1797–801.
- [53] Osman AH, Aljahdali HM. Diabetes disease diagnosis method based on feature extraction using K-SVM. Int J Adv Comput Sci Appl 2017;8:236–44.
- [54] Das J, Mazumder PM. Quercetin as a modulator of diabetic macrovascular complications in murine and chick embryo models. Indian J Pharm Educ Res 2018;52:594–601.
- [55] Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-aho PO, Karjalainen PA. Kubios HRV–heart rate variability analysis software. Comput Methods Prog Biomed 2014;113:210–20.
- [56] Sinha RK. Artificial neural network and wavelet based automated detection of sleep spindles. REM sleep and wake states. J Med Syst 2008;32:291–9.
- [57] Malone MA, Schocken DD, Hanna SK, Liang X, Malone JI. Diabetes-induced bradycardia is an intrinsic metabolic defect reversed by carnitine. Metabolism 2007;56:1118–23.
- [58] Jun JE, Lee SE, Choi MS, Park SW, Hwang YC, Kim JH. Clinical factors associated with the recovery of cardiovascular autonomic neuropathy in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2019;18:29.
- [59] Thireau J, Zhang BL, Poisson D, Babuty D. Heart rate variability in mice: a theoretical and practical guide. Exp Physiol 2008;93:83–94.
- [60] Arroyo-Carmona RE, Lopez-Serrano AL, Albarado-Ibañez A, Mendoza-Lucero FM, Medel-Cajica D, Lopez-Mayorga RM, et al. Heart rate variability as early biomarker for the evaluation of diabetes mellitus progress. J Diabetes Res 2016;8. Article ID 8483537.
- [61] Baumert M, Lambert GW, Dawood T, Lambert EA, Esler MD, McGrane M, et al. Short-term heart rate variability and cardiac norepinephrine spillover in patients with depression and panic disorder. Am J Physiol Heart Circ Physiol 2009;297:H674–9.
- [62] Takakura IT, Hoshi RA, Santos MA, Pivateli FC, Nobrega JH, Guedes DL, et al. Recurrence plots: a new tool for quantification of cardiac autonomic nervous system recovery after transplant. Braz J Cardiovas Surg 2017;32:245–52.
- [63] Williams SM, Eleftheriadou A, Alam U, Cuthbertson DJ, Wilding JP. Cardiac autonomic neuropathy in obesity, the metabolic syndrome and prediabetes: a narrative review. Diabetes Ther 2019;1:1–27.
- [64] Franca da Silva AK, Penachini da Costa de Rezende Barbosa M, Marques Vanderlei F, DestroChristofaro DG, Marques- Vanderlei LC. Application of heart rate variability in diagnosis and prognosis of individuals with diabetes mellitus: systematic review. Ann Noninvasive Electrocardiol 2016;21:223–35.
- [65] Ayon SI, Islam MM. Diabetes prediction: a deep learning approach. Int J Inform Eng Elect Bus 2019;11:21–9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8e703c40-8d6c-4164-9cf6-b282f5ab1129